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Ã 36.1. Question

Are there sensible alternatives to the thermodynamic temperature?

Ã 36.2. Answer

� 36.2.1. Preparation

The following replacing rule is helpful:

IntegralCondition  �If#a_, b_, _' � +Print#a'; b/�
�If#a_, b_, _' � +Print#a'; b/�

� 36.2.2. Formula of Textbook

The following formula (see [HMS2004], formula (3-76), page 174) yields:

CarnotProcess  �Kth,C �
T2 � T1ccccccccccccccccccccccccc

T2

 ss Simplify

�Kth,C � 1 � T1ccccccccc
T2

 

� 36.2.3. Actual Efficiency

The efficiency always is defined in technical physics the following:

Efficiency  �K � ResultingPowerccccccccccccccccccccccccccccccccccccccccccccccccccc
InvestingPower

 s.

�ResultingPower� Abs#WorkingEnergy'ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SpaceOfTime

, InvestingPower� HeatSupplycccccccccccccccccccccccccccccccccccccccccccc
SpaceOfTime

 

�K � Abs#WorkingEnergy'cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
HeatSupply

 



Thus for a circular process it is possible to consider the involved energies, also if this process would need endless time

like the Carnot process.

Since  for  the  efficiency  of  the  Carnot  process  is  divided  number  zero  by  number  zero,  this  kind  of  consideration

sometimes is not sufficient for the measuring purpose.

� 36.2.4. Historical Context

The definition of absolute (thermodynamic) temperature by the efficiency of the Carnot process has already been legal

before  the end  of  world  war II.  (see [BS1945],  volume 1,  section 103,  page 536).  In  1954 (see [dtv1969],  volume 9,

keyword Temperaturskala  (i.e. temperature scale), page 92) the 10th General Conference for Measurement and Weight

decided due to recommendation of the Comité Consultatif de Thermométrie, that the thermodynamic temperature scale

is defined by use of the triple point of water being a fixed point. This is the actual state of the art (see [HMS2004], table

1-2, page 7).

� 36.2.5. Hurdle to Insight

The  efficiency of  the  Carnot  process  is  valid  also  for  gases  that  own an  unknown thermal  capacity  Cm,V #T',  because

both the heat supply �Q, and the heat increase Q, occur as an integral of this heat capacity:

Integral  �Q � Q�Ã
T1

T2

Cm,V #T'�ÅT 

�Q � QÃ
T1

T2

Cm,V #T'�ÅT 

In  the  balance  both  of  these  integrals  add  to  number  zero,  thus  the  efficiency  of  the  Carnot  process  turns  out  to  be

independent of the heat capacity Cm,V #T' of the gas being in use.

Not all textbooks (e.g. [BS1945], volume I, section 102, pages 528-529) use the heat integral in the general form, which

can cause a hurdle to insight of the universal applicability of the themodynamic temperature.

� 36.2.6. Boltzmann's Alternative?

� 36.2.6.1. Idea

Temperature  T  is  an  intensive  quantity,  while  the  internal  energy  U  is  an  extensive  quantity.  Thus  is  seems  to  be

sensible  to  discuss  the  square  velocity  momentum of  the  distribution  function  to  be  proportional  to  temperature.  This

idea  corresponds  to  the  considerations  by  James  Clerk  Maxwell  and  Ludwig  Boltzmann  (see  [HMS2004],  formulae

(3-26) to (3-28), page 153):

(36.1)U m N Ekin

rrrrrr m N � 1ccccc
2
�m v2

rrr m N � 3ccccc
2
�kB�T
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� 36.2.6.2. Historical Trial

An  intensive  quantity  results  by  division  of  the  extensive  mean  energy  Ekin

rrrrrr
 by  the  extensive  mass  m.  This  second

momentum of the velocity v has historically been classified by Boltzmann to be the kinetic temperature.

� 36.2.6.3. Confusion with Entropy?

Due to an elaboration by Albert Einstein the second momentum of a distribution rather is to be discussed as a measure

for  disorder.  A more  detailed  consideration  also  turns  out,  that  the  Gaussian  variance  V2  is  a  very  good  measure  for

disorder and thus can loosen the quantity entropy S.

The unit of entropy so far has been $ Jcccccc
K

(, this also is the unit of Boltzmann's constant.

Now there results the question, which unit should have a mechanical equivalent for temperature.

� 36.2.6.4. General Variance

Variance V2  is defined to be the centered second momentum of a normalized distribution function and can be presented

by the momenta of the same (see [BrS1987], section 5.1.3., page 665-668):

Variance#General'  �V2 � Momentum# f #v', 2'cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Momentum# f #v', 0' �

L
N
MMM Momentum# f #v', 1'cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Momentum# f #v', 0'
\
^
]]]

2

 

�V2 � � Momentum# f #v', 1'2

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Momentum# f #v', 0'2

� Momentum# f #v', 2'cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Momentum# f #v', 0'  

Since the velocity distribution function also for Maxwell is valid in three dimensions, the following result is yielded by a

threefold integral being the second momentum presented in sphere coordinates:

Momentum#f_, m_?OddQ' : 0

Momentum#f_, m_?EvenQ' : 4�S�Ã
0

�
f v2�m �Åv

Here, this yields the following variance V2:

Variance#General'

�V2 � ¼0

�
v4 f #v'�Åvccccccccccccccccccccccccccccccccccccccccc

¼0

�
v2 f #v'�Åv

 

In  this  case,  variance  V2  is  identical  to  the normalized  second  momentum,  since  kinetic  gas  theory  deals  with  a  non-

moving substance by v
r m 0.

� 36.2.6.5. Concrete Variances

The distribution function f #v'  in the easiest case is Boltzmann's factor,  or respectively Maxwell's velocity distribution

(see [HMS2004], Formulae (3-31) and (3-34), page 154 and 155):
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BoltzmannsFactor  � f #v' � Exp$� m v2

ccccccccccccccccccccc
2�kB T

( 

� f #v' � E
� m v2cccccccccccccccc2 T kB  

MaxwellsDistribution � f #v' �
Exp$� m v2ccccccccccccccc

2�kB T
(

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Momentum$Exp$� m v2ccccccccccccccc

2�kB T
(, 0(

 s. IntegralCondition ss PowerExpand

Re$ mccccccccccccccc
T kB

( ! 0

� f #v' � E
� m v2cccccccccccccccc2 T kB m3s2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2
r����

2 S3s2 T3s2 kB
3s2  

In both cases variance yields to be:

Variance#Boltzmann'  Variance#General' s. BoltzmannsFactor s. IntegralCondition

Re$ mccccccccccccccc
T kB

( ! 0

Re$ mccccccccccccccc
T kB

( ! 0

�V2 � 3 T kBcccccccccccccccccccc
m

 

Variance#Maxwell'  Variance#General' s. MaxwellsDistribution s. IntegralCondition

Re$ mccccccccccccccc
T kB

( ! 0

Re$ mccccccccccccccc
T kB

( ! 0

�V2 � 3 T kBcccccccccccccccccccc
m

 

Comparison  Variance#Boltzmann'   Variance#Maxwell'
True

This confirms that v2
rrr

 in equation (36.1) is variance V2 being discussed here, and thus it's not the absolute temperature T .

� 36.2.6.6. Mechanical Temperature Equivalent?

There  should  result  a  mechanical  temperature  equivalent—here  discussed  by  the  example  of  the  idealized  helium,  or

respectively hydrogen, thermometer (see [HMS2004], formulae (3-27) and (3-28), page 153):
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Variance#GasKinetics'  Solve$ Mccccccccc
2
�v2
rrr   fccccccc

2
�Rm �T , v2

rrr( ss Flatten

Variance#Helium'  % s. �M � 4.0026� "g"ccccccccccccccccccccc
"mol"

, f � 3, Rm � 8.3145� "J"cccccccccccccccccccccccccccccccccccc
"mol"�"K"

, T � 1�"K" s.

�"g" � "kg"ccccccccccccccccc
1000

, "J" � "kg"�"m"2

cccccccccccccccccccccccccccccccccccc
"s"2

 

Variance#Hydrogen'  %% s. �M � 2  1.008� "g"ccccccccccccccccccccc
"mol"

, f � 3, Rm � 8.3145� "J"cccccccccccccccccccccccccccccccccccc
"mol"�"K"

, T � 1�"K" s.

�"g" � "kg"ccccccccccccccccc
1000

, "J" � "kg"�"m"2

cccccccccccccccccccccccccccccccccccc
"s"2

 

�v2
rrr � f T Rmcccccccccccccccccccccc

M
 

�v2
rrr � 6231.82 m2

ccccccccccccccccccccccccccccccccccc
s2

 

�v2
rrr � 12372.8 m2

ccccccccccccccccccccccccccccccccccc
s2

 

This  calculation trial  clearly  shows that  variance V2  is  dependent  from the  mass  of  the gas particles  being in use and

thus cannot be interpreted to be a generalized temperature T .

� 36.2.7. Universal Gas Constant

� 36.2.7.1. Molar Consideration

Equation (36.1) can further be written differently, i.e. for the molar energy:

(36.2)U m N Ekin

rrrrrr m 1ccccc
2
�Q M v2

rrr m 3ccccc
2
�Q Rm T

Here Rm is the universal gas constant, which is valid for all gases:

GasConstant  �Rm � 8.3145� "J"cccccccccccccccccccccccccccccccccccc
"mol"�"K"

 

�Rm � 8.3145 Jcccccccccccccccccccccccccc
K mol

 

Variance v2
rrr

 does not  change by this  consideration at all,  but  there results  an amazing simple mechanical  temperature

equivalent:

If  the  internal  energy  U  is  divided  by  the  extensive  matter  quantum  Q,  the  result  is  an  intensive  quantity,  which  is

proportional to absolute temperature T:
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TemperatureEquivalent Solve$U   3ccccc
2
�Q Rm �T s. �U � u Q�, u( ss Flatten

�u � 3 T Rmccccccccccccccccccccc
2

 

The unit of this reduced internal energy u is $K Jccccccccccccccc
mol K

( m $ Jcccccccccc
mol

( m $ kg m2ccccccccccccccc
mol s2 ( : #K'.

� 36.2.7.2. Mechanical Temperature Equivalent

By this a reduced energy quantum is found that corresponds to the temperature difference of 1�K:

TemperatureEquivalent s. GasConstant s. �T � 1�"K"�

�u � 12.4717 Jcccccccccccccccccccccccccccccc
mol

 

This is the reduced internal energy that is changed by an ideal gas per each Kelvin.

Since real  gases often own more freedom degrees f � 3,  it is to be exspected and also to be measured, that the molar

heat capacity Cm,V #T' especially for low temperatures corresponds to the phenomenon 0 � f � 3. The same is valid for

solid  bodies,  which  often  enough  own f m 6  —even  for  solid  iodine  I2  can  be  determinded  thereby,  that  the  iodine

crystal consists of I2 molecules.

Heat capacity of an idealized gas for all temperatures is constant and yields to be:

Cm,V #Ideal'  �T

, 3cccc
2
�Q Rm �T0

cccccccccccccccccccccccccccccccccccQ
% s. GasConstant

3 Rmccccccccccccccc
2

12.4717 Jcccccccccccccccccccccccccccccc
K mol

Even this is the mechanical temperature equivalent.

� 36.2.7.3. Result

By  this  is  shown,  that  there  is  an  absolute  temperature  scale,  which  corresponding  to  theory  can  be  set  over  all  real

thermometers. Thus there is a theoretical alternative to the temperature definition via the Carnot process.

The  unit  of  entropy S  therefore  is  $ Jcccccc
K

( m $ JccccccccccJcccccccccc
mol

( m #mol'  and  becomes  even less  clearly  than  before:  The  permanent

increase of entropy S  cannot be determinded by the phenomenon, that the experimental construction would increase by

matter  quantum  Q  or  mass  m.  Thus  entropy  S  is  a  quantity  with  a  density  (near?)  of  number  zero.  This  forces  the

supposition,  that  the  quantity  entropy  according  to  Rudolf  Clausius  might  have  been  a  reprint  of  the  heat  substance

phlogiston (see [HMS2004], section 3.3.2., page 159).

The  alternative to  the entropy S  according to  Ludwig Boltzmann is  the older variance V2  according to  Carl Friedrich

Gauss:
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Variance#Maxwell'

�V2 � 3 T kBcccccccccccccccccccc
m

 

Its unit is $ K Jcccccccccccc
kg K

( m $ m2cccccccc
s2 (, i.e. a square of velocity—being obvious.

Ã 36.3. Protocol

The Mathematica version has been:

�$Version, $ReleaseNumber, $LicenseID�
�Microsoft Windows 3.0 +October 6, 1996/, 0, L4526�3546�

The calculation time needed:

TimeUsed#'�"s"

4.76 s
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