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Abstract

We translate the beginning of the central chapter of the original treatise [1814Lapl], chap-
ter 3 in the 2nd book, with its over 500 pages, and add some comments and annotations,
in order that the interested reader of the 21th century may understand what is meant. In
adjustment to the English style of today we replace the future tense by the present, anal-
ogously to the expectation for a back-translation from a Hebrew text. This translation is
kept closely in style to the original text, so that the reader, who has got no knowledge of
the French language of the 19th century, will get an impression of Laplace’s style. In order
to facilitate quotations, the page numbers of the French second edition of 1814 are placed
within the translation at the places, where they are in the original, after the following full
stop. The comments in the footnotes serve the subsequent explanation of the mathematical
contents.

[page 275]

3 The Laws of Probability,

which Follow the Infinite Repetition of Events.

16. The corresponding probability of events develops more and more in the same way as
the events are multiplied: The average results, the gains and the losses of these multiplica-
tions reach out for limits, to which they always approach with increasing probability. The
determination of that approach and of its limits is one of the most interesting and delicate
parts of chance analysis.

At first we consider the way the probability of two simple events develops, of which
the one or the other necessarily results of each throw, when multiplicated many times.
Obviously, the event with the greater possibility must take place more frequently in a pre-
set number of throws; and of course each of the two events should take place proportionally
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to its possibility, if the throws are repeated many, many times. That could be supported by
experience. That is an important theorem, which now we are going to prove analytically.

We have seen at No. 6, that if p and 1 − p are the corresponding probabilities of both
events a and b, the probability of x + x′ throws, that the event a will take place x times,
and the event b x′ times, is equal to:

1 · 2 · 3 · · · (x+ x′)

1 · 2 · 3 · · · x · 1 · 2 · 3 · · · x′
· px · (1− p)x

′
; (1)

this is the (x′ + 1)th summand of the binomial [p + (1 − p)]x+x′ . Now let’s consider the
greatest of these summands, which we call k. The preceding summand be k · p

1−p ·
x′

x+1 , and

the subsequent summand be k · 1−p
p · x

x′+1 .
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For k being the greatest summand, there is a compelling demand, to fix simultaneously1:

p

1− p
<

x+ 1

x′
>

x

x′ + 1
; (2)

from which easily can be concluded, that with x+ x′ = n we receive2:

x < (n+ 1) · p > (n+ 1) · p − 1 ; (3)

thus x is the greatest integer number, which is contained in (n+ 1) · p; therefore results3:

x = (n+ 1) · p− s , (4)

of which follows:

p =
x+ s

n+ 1
, 1 − p =

x′ + 1− s
n+ 1

,
p

1− p
=

x+ s

x′ + 1− s
; (5)

s shall be less than unity. If x and x′ are huge numbers, then we receive in extemely good
approximation:

p

1− p
=

x

x′
; (6)

which means, that the exponents of p and of 1− p in the greater expression of the binomial
are approached very much to each other in the ratio of the frequencies; thus the most
probable combination (which can take place at a huge number n of throws) of all is the
reason for each event occuring proportionally to its probability.

The lth expression after the greatest is:

1 · 2 · 3 · · · n
1 · 2 · 3 · · · (x− l) · 1 · 2 · 3 · · · (x′ + l)

· px−l · (1− p)x
′+l . (7)

1today’s syntax: x
x′+1 < p

1−p < x+1
x′

2today’s syntax: (n+ 1) · p − 1 < x < (n+ 1) · p
3Here, the expectation value x = n · x

x+x′ = n · p is rounded to be an integer.
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Due to No. 32 of the first book we have4:

1 · 2 · 3 · · · n = nn+
1
2 · c−n ·

√
2π ·

{
1 +

1

12 · n
+ etc.

}
; (8)

of which follows5:

[page 277]

1

1 · 2 · 3 · · · (x− l)
= (x− l)l−x−

1
2 · c

x−l
√

2π
·
{

1− 1

12 · (x− l)
− etc.

}
, (9)

1

1 · 2 · 3 · · · (x′ + l)
= (x′ + l)−x

′−l− 1
2 · c

x′+l

√
2π
·
{

1− 1

12 · (x′ + l)
− etc.

}
. (10)

Now we develop the term (x− l)l−x−
1
2 . Its hyperbolic logarithm is:(

l − x− 1

2

)
·
[
log x+ log

(
1− l

x

)]
; (11)

but now is valid:

log

(
1− l

x

)
= − l

x
− l2

2x2
− l3

3x3
− l4

4x4
− etc. ; (12)

we neglect the set of the order 1
n , and we assume, that l2 does not exceed the order n at

all; by this we neglect the terms of the order l4

x3
, because x and x′ belong to the order n.

Therefore we receive: (
l − x− 1

2

)
·
[
log x+ log

(
1− l

x

)]
=

(
l − x− 1

2

)
· log x + l +

l

2x
− l2

2x
− l3

6x2
; (13)

generating the following formula by inserting the logarithms to the numbers6:

(x− l)l−x−
1
2 = cl−

l2

2 x · xl−x−
1
2 ·

(
1 +

l

2x
− l3

6x2

)
; (14)

equally we receive7:

(
x′ + l

)−l−x′− 1
2 = c−l−

l2

2 x′ · x′−l−x′−
1
2 ·

(
1− l

2x′
+

l3

6x′2

)
. (15)

4Laplace approaches ex ≈ 1 + x, more consequent is due to [1910Mel], equation (120), page 335:

ln Γ(n+ 1) = −C n − 1
2π i

∫ 3
2 +i∞
3
2−i∞

π
sin(π z) ζ(z) n

z

z dz = −C n +
∑−∞
µ=1 resz→µ (Γ(−z) Γ(z) ζ(z)nz) =

− C n + (n ln(n)− n+ C n) +
(

1
2 ln(2π n)

)
+
(

1
12n

)
+ . . . =

(
n+ 1

2

)
ln(n)− n+ 1

2 ln(2π) + 1
12n + . . . ,

thus following: 1 · 2 · 3 · · · n = n! = Γ(n+ 1) =
√

2π n
(
n
e

)n
e

1
12n · · · = nn+ 1

2 · e−n ·
√

2π · e( 1
12n + ...) .

5today’s corrections:
1

1 · 2 · 3 ··· (x−l) = (x− l)l−x− 1
2 · ex−l√

2π
· e

(
− 1

12 · (x−l) − ...
)

1
1 · 2 · 2 ··· (x′+l) = (x′ + l)−x

′−l− 1
2 · ex

′+l
√

2π
· e

(
− 1

12 · (x′+l) − ...
)

6today’s correction: (x− l)l−x−
1
2 = el−

l2

2 x · xl−x− 1
2 · e

(
l

2 x−
l3

6 x2

)
7today’s correction: (x′ + l)

−l−x′− 1
2 = e−l−

l2

2 x′ · (x′)−l−x
′− 1

2 · e

(
− l

2x′+
l3

6 (x′)2

)
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By the preceding we get p = x+s
n+1 , with the result, that s is less than the unity; therefore by

setting p = x−z
n , z is between the ranges x

n+1 and −n−x
n+1 , and as a result, is less than unity,

apart from the sign. The value of p results 1− p = x′+z
n ;

[page 278]

therefore, by the preceding examination, we receive8:

px−l · (1− p)x′+l =
xx−l · x′x′+l

nn
·
(

1 +
n z · l
x x′

)
; (16)

of which follows9:

1 · 2 · 3 · · · n
1 · 2 · 3 · · · (x− l) · 1 · 2 · 3 · · · (x′ + l)

· px−l · (1− p)x′+l

=

√
n · c−

n l2

2 x x′

√
π ·
√

2xx′
·
(

1 +
n z l

x x′
+
l (x′ − x)

2xx′
− l3

6x2
+

l3

6x′2

)
. (17)

We receive the term preceding the greatest one, being away from this by the distance l,
then we set l to be negative in this equation; afterwards we add both terms. Their sum
is10:

2 ·
√
n

√
π ·
√

2xx′
· c−

n l2

2 x x′ . (18)

If we choose the case l = 0 contained therein, the concluding integral is11:

∑ 2 ·
√
n

√
π ·
√

2xx′
· c−

n l2

2 x x′ . (19)

Therefore this integral expresses the sum of all terms of the binomial12 [p+ (1− p)]n and
is between both terms, of which one13 has got px+l as its factor, while the other one
owns the factor px−l, and which therefore both are at the same distance to the greatest
term14; however, from this sum we must substract the greatest term, which consequently
is contained twice15.

8today’s syntax for z2 ≈ 0 results: px−l · (1− p)x′+l ≈ xx−l · (x′)x
′+l

nn ·
(
1 + n · z · l

x · x′
)

9today’s correction:

1 · 2 · 3 ···n
1 · 2 · 3 ··· (x−l) · 1 · 2 · 3 ··· (x′+l) · p

x−l · (1− p)x′+l ≈
√
n · e−

n · l2
2 · x · x′√

2 ·π · x · x′ ·
(
1 + n · z · l

x · x′
)
· e

(
l · (x′−x)
2 · x · x′ −

l3

6 · x2
+ l3

6 · x′2

)
10today’s correction with limn→∞

n
x · x′ = limn→∞

n
n · p ·n · (1−p) = limn→∞

1
n · p · (1−p) = 0 results:

limn→∞
√
n√

π ·
√

2 · x · x′ · e−
n · l2

2 · x · x′ ·
[(

1− n · z · l
x · x′

)
e−

l ·n · (2 · p−1)

x · x′ +0 +
(
1 + n · z · l

x · x′
)

e
l ·n · (2 · p−1)

x · x′ +0
]

= 0

11today’s correction: limn→∞

[∑x
l=−x′

√
n · e−

n · l2
2 · x · x′√

π · 2 · x · x′ +
∑n−x=x′

l=−x

√
n · e−

n · l2
2 · x · x′√

π · 2 · x · x′

]
= 2 · ∞ · 0 = 2 · 1 = 2

12For all n is valid: [p+ (1− p)]n = 1n = 1 .
13Correct: (1− p)x′+l, symmetry is valid for p = 1

2 with x = n · p = n
2 = n · (1− p) = x′ only.

Here Laplace comes erraneously from a sum, which in the limit n → ∞ would run from l = 0 until ∞. At this
point he does not remark his error, because he just indicates the Leibniz notation only, by omitting the sum
limits. By mirroring at the expectation value with subsequent addition, he forces a symmetry, which else mainly
exists for the limit zero at n→∞.

14Here, the maximum becomes zero by the limit n→∞ .
15Not only the greatest term itself, but even the whole sum is doubled.
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To receive this definite integral, due to No. 10 in the first book, we now consider y to
be a function of l with16:

∑
y =

1

c(
dy
dl ) − 1

=

(
dy

dl

)−1
− 1

2

(
dy

dl

)0

+
1

12

dy

dl
+ etc. ; (20)

from which we can derive by the same number17:

∑
y =

∫
y dl − 1

2
y +

1

12

dy

dl
+ etc. + constant . (21)

[page 279]

By equating here y to18 2 ·
√
n√

π ·
√
2xx′

· c−
n l2

2 x x′ , the subsequent differentials of y take the factor

n l
2xx′ and its abilities; thus preceded, that l cannot be greater than the order

√
n, this factor

is of the order 1√
n

, and consequently its differentials decrease more and more, devided by

the corresponding powers of dl; therefore, by neglecting the terms of the order 1
n , analogous

to the preceding, we receive19:

∑
y =

∫
y dl − 1

2
y +

1

2
Y , (22)

by beginning with l both definite and infinitely small integrals and by calling Y the greatest
term of the binomial20.

The sum of all terms of the binomial21 [p + (1 − p)]n, which are contained between
both terms, and which are both equally distant to the greatest term of number l, equated
to22

∑
y − 1

2 Y , results23: ∫
y dl − 1

2
y ; (23)

and if the sum of both of these most outside terms24 is added here, then we receive as sum
of all of these terms25: ∫

y dl +
1

2
y . (24)

By setting:

t =
l
√
n√

2xx′
, (25)

16today’s correction:
∑n− x= x′

l=−x y(l) 6= 1

e(
dy
dl )− 1

=
(

dy
dl

)−1

− 1
2

(
dy
dl

)0

+ 1
12

dy
dl + etc.

17Here, Laplace shows that he has not understood and applied consequently enough the Leibniz notation of

differential calculation. Today’s correction:
∑n− x= x′

l=−x y(l) →
∫∞
−∞ y(l) dl 6= dl

dy −
1
2 + 1

12
dy
dl + etc.

18today’s correction:
√
n√

2π xx′
· e−

n l2

2 x x′

19today’s correction:
∑n− x= x′

l=−x y(l) →
∫∞
−∞ y(l) dl = 1

20today’s correction: determining the definite and infinitely small integral
21For all n is valid: 1n = en ln(1) = e0 = 1 .
22today’s correction:

∑n− x= x′

l=−x y(l)
23today’s correction:

∫∞
−∞ y(l) dl

24They are as good as zero.
25today’s correction:

∫∞
−∞ y(l) dl
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we receive the sum26:

2√
π
·
∫

dt · c−t2 +

√
n

√
π ·
√

2xx′
· c−t2 · (0) . (26)

Presupposed that the terms we neglected of this27 belong to the order 1
n , the preceding

expression becomes the more precise28, the more n is increased: It is valid strictly, if n is
infinite29. By the preceding analysis it should be easy to consider the terms of the order 1

n
and higher orders.
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26today’s correction:
∫∞
−∞ e−t

2 dt√
π

= 2√
π

∫∞
0

e−u du
2
√
u

=
Γ( 1

2 )√
π

=

√
Γ( 1

2 ) Γ(1− 1
2 )

π = 1√
sin(π2 )

= 1

27This means, from the preceding sum.
28today’s correction: The norm 1 is fulfilled strictly, independently of n .
29Here, for n→∞ is valid: ∞ · 0 = 1 .
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