Chapter 1

Description of Diffusion

m 1.1. Description of Normal Diffusion

m 1.1.1. Plan of Action

In history there are several kinds to describeudi€fn. In the following only some of them shallib&oduced
to choose more detailed, before anomalous diffuisiaiescribed.

m 1.1.2. Fick's Diffusion

m 1.1.2.1. Fick's Laws

Additional to the continuity equation
Oplx, t]+0xj[x t]=0, (1.1)

with mass density[x, t] and stream densitj{x, t] in the coordinatex andt, a so-called constitutive or
essential equation is needed, which establishedtef connection between stream density and nexssityl.

Due to Fick the first of Fick's laws (see [Metz1§38juation (6.2), page 74) yields the followinéaten:
jIX t] = =2 dxp[X t]. 1.2)

The diffusion coefficienA, being contained in Fick's first law (1.2), is aterial quantity, which can change
spatially by the dimensions of the experiment asd aven temporally by chemical reactions withia game.
These effects shall not be the focal point of giaboration, therefore in the following the diffoisiparameter
A almost everywhere is a real material constanpats and time.
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By substitution of Fick's first law (1.2) into tle®ntinuity equation (1.1) Fick's second law isdeling, which
already is considered to be a diffusion equatiene bbeing completed by an arbitrary stearing qtyasitx, t]:

OplX t] = AdxxplX t] = 8[x, 1]. 1.3)

If external influences are absent (stearing quasfi, t] = 0), then also the continuity equation (1.1) owns
neither sources nor hollows, thus the spatial nale@f the mass densitp[x, t] represents a temporal
conservation quantity. Therefore in theory the dgnssually is normalized. Equation (1.3) also ascin
connection with Fourier's theory of heat conductiwhere in this case the mass dengitis replaced by the
temperaturd' .

m 1.1.2.2. Propagator of Fick's Diffusion

The propagator of Fick's diffusion equation (cadtiain see chapter 3 of this elaboration) yieldsnfidirac's
delta function ([Dir1927], 82, pages 624-627) bdimg initial value problem:

bt = Bxl- 2| .4
, Varat

The Fourier convolution of the factual initial dibution with the propagator yields the generalitoh of the
homogeneous part of equation (1.3).

m 1.1.2.3. Normal Distribution and Einstein's Relatio

The propagator of Fick's diffusion equation is au§€an bell-curve, which also in statistical theowns a
special importance ([Acz1961], section 2.3.5., gagé-97). In 1809 it has been given by Gauss ireiggn
with the so-called varianag?, the mean sum of scatter squares, and in thisicisseallednormal distribution
([Brs1987], section 5.1.2.2.2, page 664):

i ral
fIx] = | ——22 |, 1.5
[X] [ Nerees (1.5)

From the equations (1.4) and (1.5) by coefficieminparison directly results the variance of Fickffudion
propagator, namelky? = 22 t, which is designated as Einstein's relation.

In general the variance is calculated from thet finkee momenta of a distribution (see appendixfAhts
elaboration).
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m 1.1.3. Normal Diffusion due to Cattaneo

In the year 1948 C. Cattaneo in Rome publishedpamppCat1948], wherein a diffusion equation isdainced,
being motivated by molecular kinetics, which is tbbowing ([Cat1948], equation (22), page 94):

atp[xi t] +Tattp[xl t] _Aaxxp[xi t] = S[X, t] . (16)

Here a specific time occurs, which considers the finiteness of the atteristic diffusion velocity. This
connection is indicated by Cattaneo ([Cat1948],atign (23), page 94) and explicitly repeated byFT.
Nonnenmacher ([Non1980], text after formula (4)ge&63):

A=V, 1.7)

A connection to Boltzmann's impact dynamics is giue these elaborations, wheteis proportional to the
finite time between two impacts.

If a limit T - 0 is calculated in such a way, that the diffusioeffioient A remains constantly during this, then
the characteristic velocitybecomes infinitely large, and Fick's diffusion ation (1.3) is regained.

The equation by Cattaneo is of hyperbolic type quitk difficult to be solved. Not yet the complet®menta
of the propagators are found in literature ([dJ&§19[CM1997], [MN1998]). The variance of the stati
solution propagator (with start velocity zero) hirgiven without derivation:

o2 =20 (t-1)+ 2ATExp[-t/7] (1.8)

(calculation procedure: see chapter 2). This melaesto the variance theorem (1.14), that the soiutif the
static Cattaneo propagator is given as a Fouriavalation of two functions. For short times the igace
starts by the variance (1.19) of a wave equatidmchvduring this elaboration is hamed as wave waga
o’ = % t2, and for long times >> 7 it passes over to a time shifted Fickian diffusianiances? = 2 t.
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A comparison of the Cattaneo variance (1.8), sigriis wave varianag? = % t2, to the usual wave variance
(1.19) vields an interpretation of the charactarigelocity in the diffusion parameter (1.7) as waaxpansion
velocityv.

From the mathematical point of view the Cattaneoaéign does not distinguish from the so-calledgedph
equation ([HT1956], §204, equations (8) and (9)yed80), which can be derived in electrodynamics to
describe a damped electromagnetic wave. Howeverplienomenondamped wavend diffusion eventually
are not the same. Therefore also further diffushmaels can be searched for.

m 1.1.4. Normal Diffusion due to Diffusion Principle

m 1.1.4.1. Verbal Formulation of Diffusion Principle

Analogously to Huygens' principle for wave expans{{BeS1945],I, 8§76, pages 362-369) from the year
1678, also a diffusion principle can be descrilvettich could be the following:

Each point of a matter distribution is starting pbbf a new elementary matter redistribution. Tharentary
matter redistribution takes place in such a wawpttihe space being available is used for it. Theesposition
of all new elementary matter redistributions yiellds new matter distribution.

The essential difference to the principle of waxpamsion consists in the fact, that no envelopthefnew
elementary processes takes place.
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m 1.1.4.2. Superposition Possibility

The same of diffusion principle and of Huygenshpiple for wave expansion is, that the separatibthe
dynamics into elementary, singular processes isiples which themselves are very simple. Therefgobal
diffusion is described by local conflusion (1.9g{in confluere: flow together).

For mathematical description of superposable (beibp to be superimposed) phenomenons serve linear
equations ([Stoe1998], 7.1.1.7, page 201). Therpagdion possibility of diffusive processes in flalowing

is estimated to be given, wherefore furtheron dinkgar equations are discussed. Also the equafibi33 and
(1.6) are linear and therefore allow the additiot@hsideration of stearing quantities. In literatatso non-
linear diffusion equations occur (for example [HB8Y, which are not followed up as part of thisbeleation.

m 1.1.4.3. Difference Equation

The given diffusion principle in the easiest case be modeled as linear difference equation imglesispace
dimension, which can be generalized to problemsdial symmetry. With the density distributigifix, t] and
a characteristic velocity, being introduced to conserve all physical urdisd the time differencat, this
approach yields the following equation for an elatagy process:

pIX— VAL, t - At] N p[X+ VAL, t — At] 3
2 2 B

pIx t]. 1.9

During diffusion the movement of a singular pagieimost always takes place in a zigzag course, ttiel
maximum velocity of diffusion within the context tfis model is given by the global sound velogitgwave
expansion velocity) of the system. Both effectdfifdion and wave) can be understood as causednigylar
impacts.

If the atomic character of matter is to be stresegeh one must consider, that between two singoipacts
really a finite duration time, namelyt > 0, takes place. For this kind of consideration aiso for computer
simulations, equation (1.9) is a possible accedhdadescription of diffusion events, which of caican be
improved.
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m 1.1.4.4. Solution to the Difference Equation

The given difference equation (1.9) in the sens¢hefscanning theorem in telecommunications tedgyol
([Mar1986], chapter 6, pages 127-131) owns a defisolution for an initial value problem, whichrssaby a
standardized total distribution at= 0 and at time& = O:

11 (2p)!

PLX U = U = L xaviay, xviy |I'
2vAt 23 375 ) (2VAL 23 (G Gog)!

(1.10)

The verification of the binomial distribution (1)18s solution to the diffusion equation (1.9) candone by
elementary calculation. The norm constant furtheentas been set tgvlﬁ.

The variance of the symmetrical binomial distribati(1.10) is known, if the coefficients are not ghded:

n
o?[2" (k—l’-]] = %. The use of the substitutiom » 2vAtk for the variance calculation of the
2

standardized binomial distribution (1.10) yields:

1 t
2- _— _(2VAH® —— = AtVPt =2t 1.11
7= Suat CVAY I ’ (1.11)

where the last mentioned identity follows with = 2 in relation (1.7).



Chapter 1. Description of Diffusion 21

m 1.1.4.5. Transition to a Differential Equation

If the difference equation (1.9) is interpretedsirch a way, thaAt shall be the variable of a Taylor's series
(thus the solution function be steady and difféedie), then the Taylor's series of this differemzpiation
yields the following differential equation with errorderO[At?]:

At V2 At
oplx, t] - > O plX t] - > OxxplX, t] = 9, t]. (1.12)

This is an elliptic modification of Cattaneo's etjoia (1.6), where the shape of the diffusion caégfit (1.7) is
confirmed forAt = 2. Also the modified Cattaneo equation (1.12) caly e solved heavily. Here, even the
variance calculation of the static solution progaghides severe difficulties.

m 1.1.5. Further Proceeding

m 1.1.5.1. Limit Calculation to Fick's Diffusion Equaions

The limit calculationT -» 0 with conversation of the diffusion coefficiedt in equation (1.7) changes
Cattaneo's equation (1.6) into Fick's diffusion apn (1.3). The same result is received by thedtlim
calculationAt - 0, if the expansion velocity in the modified Cattaneo equation (1.12) runsifmity in such a
way, that the diffusion parameteremains constant due to equation (1.7).

By this limit calculation the solution (1.10) turttssthe propagator (1.4) of Fick's diffusion:

At

t
[zxti\i] _ Bl :[Exp[—%i]]_ (1.13)

2VAL2E oyt Vart

PIx, t] =

Tt
2 At
In this connection the author thanks Mr. Profed3orP. Chvosta (Prague) for a detailed discussimutithe
simultaneous limit calculation (1.13).
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m 1.1.5.2. Hypothesis on Variance

The variance (1.11) of the binomial distribution1(@) is equal to the variance of Fick's diffusiomgagator
(1.4), namelyw? = AtV?t = 2At.

Therefore the normal diffusion owns independentlthe question about the finiteness or boundlessotthe
characteristic wave expansion velovity a uniform varianceo?, which increases proportionally to the
measuring time. In the elaborations of A. Einstein, who claiméd finiteness of wave expansion velocity to
be essential, thus no internal contradiction iméhwsince Einstein's relation (1.11) is valid natyofor Fick's
diffusion propagator, but also for the discreteobnmal distribution. A propagator starts at titne 0 as Dirac's
delta functiond[x], the variance of which is zero. The variance dumstell anything about the precise shape
of a distribution function.

The hypothesis suggests itself, that the elliptiodification of Cattaneo's equation (1.12) compat@dhe
parabolic Fickian diffusion equation (1.3) or th#fetence equation of the binomial distributiong)Ldoes not
own a fundamentally different variance. Due to Egirss relation all three equation types descrifgenbrmal
diffusion as part of a corresponding model. The hyperbodittabeo equation (1.6) for long times also owns
the variance of normal diffusion.

The naming of partial linear differential equation$ 2" order after conic sections is related to the
characteristics method ([HT1956], §146, pages 2B2:2vhich shall not be applied as part of thidetation.
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m 1.2. Classification of Diffusion

m 1.2.1. Comparing Measured Data with Theoretical Prpagators

m 1.2.1.1. Problem

A theoretical propagator always starts with a D#ratelta function as initial value problem. Howevenis
initial value problem cannot strictly be realizedainy experiment.

Rather the general solution of a partial lineafedéntial equation (at least for constant coeffits¢ arises as
Fourier convolution of the time dependent propagaith the time independent initial distribution.

These considerations question first the classificadf diffusive processes via Einstein's relatibacause not
the propagator is measured itself, but a Fouriavalution with this propagator only.

Therefore a direct comparison of measured datagtorétically calculated propagators is not easy.

m 1.2.1.2. Variance Theorem

In this connection, the variance theorem (1.14)ofisspecial importance (proof see appendix A of this
elaboration), which enables a universal comparisfotneoretical propagators of linear equations tasured
data. It describes the variance of a Fourier cariai as sum of the variances of their convolution
components:

o?[f[x]=glX]] = o? f fIx—ylalyldy| = o?[f[x]] + o?[gIX]] . (1.14)

The system, being described via a linear equaisodescribed by a Fourier convolution of the tinependent
propagatom[x, t] and the time independent initial distributidfix, ty]. The Fourier convolution with a Dirac's
delta function (see chapter 2 of this elaboratawniys yields the other convoluted function:

f S ylglyldy = gix] (1.15)

0o
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With both insights (1.14) and (1.15) the variant¢he propagator follows via a corresponding vaz@balance
of measured data:

a?[ X, tol = pIX, t —to]] — ?[ F[X, to] = S[X]] = ?[p[X, t —tol] . (1.16)

Thus the comparison of theory to measurement ie @aisy via the variance.

m 1.2.1.3. Importance of the Variance Theorem

The variance of measured data always can be ctdduld@he variance of the theoretical function can b
calculated only, if the function values of the splainterval can be set to zero from a clearly wiglile position
on, being outside of the measurement area.

A theoretical function describes measured dataiqudatly well, if the numerical value of the thetical
function outside of the measuring area is as gaodeso. In this case, the momentum integrals asal thie
variance usually still without problems can be alted with infinite integration limits.

The variance theorem (1.14) gives a universal actesenable comparison of the dynamics of complex
(complicated) linear systems to corresponding nrealswlata. Especially the falsification of a theadsy
possible via the variance balance (1.16).

In this way, many different theories can be comgaoereal measured data rapidly and reliably.

m 1.2.2. Classification of Transport Processes via Viance

m 1.2.2.1. Confirmation of Einstein's Relation

In case of normal diffusion, the variance balantd.§) leads to a confirmation of Einstein's relatadso for
measured data, which does not start with variaeoe. Here, the question on the finiteness of ttaatteristic
velocity v is not to be discussed completely!

Thus for this elaboration, there is sufficiencyntodel the variants to Fick's diffusion law (1.3)siach a way,
that they both can be solved as easy as possillesatisfy an expanded Einstein's relation, whico al
describesanomalous diffusian

Mainly these variants are given in shapdrattional differential equationsOften their solution propagators
areFox's H-functiongsee chapter 2 of this elaboration) only, which quite pleasant from the analytical and
numerical point of view.
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m 1.2.2.2. Variance of the Static Wave Propagator

The wave equation
A plX, t] = V2 dyxplx, t] =0 (1.17)

also owns a time dependent variance of the statiggmator:

O[X=vi] +0[x+ V]
olx, ] = ( . ) _ (1.18)
The mean scatter square increases clearly by tjers:
o? =V 12, (1.19)

m 1.2.2.3. Classification Scheme of Diffusive Process

Normal diffusion stands out for proportionality thfe static propagator variane€ to the measuring time
(Einstein's relation}-independently of the shape of the initial value bpens and of the existence of a
maximum expansion velocity

A general diffusive process stands out for a stnobnotonously increasing variance of the statappgator,
where the growth is described by a power law inetiff’WGMN1997], sectionV, pages 103-104;
[ZSKN1999], section, page 1292):

oo ~t (1.20)

The powera of the diffusion variance (1.20) enables the fellgy classification, which shall be valid
furthermore:

O<a <1  anomalously slow diffusion (subdiffusion),
a=1 normal diffusion (Einstein's relation),

l<a <2  anomalously rapid diffusion (superdiffusion),
a=2 ballististic transport (wave expansion),

a>2 turbulent transport.
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To get the powere, the variance balance is drawn double logarithrag straight line, this is
Ac? = o2[t] — o?[tg] overt—ty. Especially, if the variance balance (1.16) issimig, such kinds of double
logarithmic figures cause fallacies. The gradiendf the resulting straight line in non-distorteghmesentation
corresponds to the powerof t*.

All processes, the propagator variances of whiecingabe described by a power law in time, or wiégbn do
not increase strictly monotonously, are not to tvestered as diffusive processes. Among thesexeimple is
the car distribution in Ulm, or the distribution arfits in and around an anthill.

m 1.2.3. Further Aspects of Diffusion Description

m 1.2.3.1. How to Deal with Drift in Dynamics

It is controversial, whether for diffusion descigst also a temporal change of the expectation vafuthe
distribution function is allowed. Certainly, thisnkd of considerations both will not change anythiofy
variance, and it prevents a radial symmetric gdization from one space dimension to several space
dimensions, because this generalization at presehdeift leads to sources and hollows of the tpamted
material and thus contradicts to the originallyes®@itinuity equation (1.1).

The discussion of drift terms, how there is poptyaespecially as part of the Fokker Planck equmtio
([Ris1984], section 1.2.1, page 4-5; [vKam1984Jamter X.3, pages 291-293), therefore is not thenrfaius
of the elaboration presented here.

Rather, as part of this elaboration tjvity center theorens set to be given and also to be aspired to the
experiment. Certainly, drift can change the shapea distribution function temporally, while the vamce
should be independent thereof.

Now, to enable comparison of two different theoriéth each identical variance behaviour to measued,
the missing of a drift (temporal change of the etpion value) is to be proven by measurement at th
experimental set-up, before one of both theoriesoeaprefered.

m 1.2.3.2. Generalization to Several Space Dimensions

Due to Rayleigh ([Fel1971], section 1.10(e), pa82s33), an isotropic (independent of direction) alyics
clearly can be projected to a single space dimansio
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The oldest example for this kind of description esnfrom L. Euler when discussing the three-dimeradio
wave equation in comparison to the one-dimensional ([HT1956], equations (26)-(30), page 421 argepa
465).

In this case, the corresponding Laplace operatangds according to the transformatigfr, t] = %,
wheref [r] gives the corresponding distance law, so in casespherical wavd [r] = V4xr2:
9*PIr, 1] ( 1 &Il t]))
. 1.21
or2 < flr] or2 ( )

This way, radial symmetric, linear equations wittmplicated, analytical coefficients clearly turn dimple
linear equations in one space dimension only.

With two space dimensions or with distance lawdiffusion, Euler's trick (1.21) is not use, becafigen
deductive mathematics follow different results (xample [Metz1996], equation (6.4), page 74), whic
prevent the turn to a one-dimensional equation.

The specific distance law for the dynamics on asphl surface for example yields
o r
flr]=2xR |s|n[§]|, (1.22)

wherer describes the arc distance on the spherical sjrta@R the radius of the sphere. The corresponding
Laplace operator for wave or diffusion has nothetn derived on an independent way until now.

An essential difference between a wave and diffusio several dimensions consists in the fact, tbat
diffusion the spatial integral over the densityisonservation quantity (often the total mass))evtur a wave
the spatial integral over the square of the wavatiem is a conservation quantity (usually the taaergy).
This difference does not attract attention forahe-dimensional consideration.

In order not to be out of proportion of this eladtion, during the further course discussions maané/done in
a single space dimension only, which can be traadfto radial symmetric problems at least by usewér's
trick (1.21).

The combination of the distance law (1.22) with dgigl trick (1.21) can be discussed as part of an ow
hypothetical model, while other generalizationstioé Laplace operator also own other solutions ak gfa
other models.
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m 1.3. Description of Anomalous Diffusion

m 1.3.1. The Formula by Wei, Bechinger, and Leiderer

In their paper [WBL2000] Wei Q.-H., C. BechingendaP. Leiderer give a normal distribution with aigace
describing anomalous diffusion. This distributie@ds ([WBL2000], equation (2), page 627):

p[— 4Ft"]
,t] = . 1.23
plx, t] = [ TP (1.23)

In the mentioned paper also further sources aeal ditr this distribution, but not on the basis aflyamamic
equation. Rather this approach is purely heuristjcwhich at least the phenomenanomalous diffusiofis
described correctly concerning variance.

The authors of this paper kindly put their measutata for further evaluation at the author's digpas part of
this elaboration.

m 1.3.2. Time Fractional Diffusion Equations

In their paper [SWy1989] Schneider and Wyss givenedified Fickian diffusion equation, which uses
Riemann's integral operator and also describes aloo diffusion.

Riemann's integral operator interpolates the séwenders of integration and differentiation. It defined
sensibly for all complex differential ordefs In the software packade&actionalCalculusjust the differential
operator of Riemann and Liouville is available (J8k993], equation (2.32), page 37), which &« O turns
to Riemann's integral operator of the integraticieo— g:

DETIX] =

(dx [ln- ﬁ]f(x y)Ft 4y,
(1.24)

_{[Re[ﬁ]]+1 Rdpl1 =0,
B 0 RepB] <0.

The Riemann Liouville operator in purely integrapresentation Re[8] < 0) at a=0 gives a Laplace
convolution with a power function. The physical mation of the Riemann Liouville operator is dissed
time and again. A possible access is indicateédtian 3.1.1 of this elaboration.
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Since the Laplace transformation of a linear eguatiields the initial value problems, there arekatids of
analytical difficulties to set up a time fractionaduation with consistent initial value problem.isTkind of
problems have already been dealed with succesdsfiylithe work of Schneider and Wyss ([SWy1989],
equation (1.1)-(1.5), page 134), Gloeckle ([Gloed]9%ection 3.3, page 28-33), and finally Wyss &ligss
[WW1999].

The addition of an inhomogenous stearing fasfog t] to the equation by Schneider Wyss yields the falg
representation of the time fractional diffusion atjon withO < g < 1:

%, 1= A DG L Lpwdx, ] = 8lx, . (1.25)

The integrated representation of this equation ainstall initial value problems and does not caasg
problems also concerning Laplace transformatiore because o > 0 (see [SWy1989], equation (2.1), page
135):

_l_iﬁ] M p[x, t— 0] " M)_,3[c')2,o[x, t]
n! 0t g%z

| = Do P six, 1. (1.26)
In this connection has been used, that Riemantégril operator is a generalization of Cauchy'mitsl
integral ([Non1996], chapter 2.2.2, page 19). Tteus3ian step function ([Wol1997], chapter 3.2.2cfion
Floor[ ], page 775) or Gaussian bracket function is mablyeaingle bracketf], without a leading symbol.

Both representations (1.25) and (1.26) of the tiineetional diffusion equation interpolate betweeitks
diffusion equation (1.3) and the wave equation{Lith a single space dimension. Therefore the magaf the
propagator of equation (1.26) also clearly yieldsraporal power lavo? ~t# to describe anomalous diffusion,
what will be shown more detailed as part of thabekation (chapter 3) and on the basis of measxachples
(chapter 4 and 5).

m 1.3.3. Space Fractional Diffusion Equations

In their paper West et al. [WGMN1997] use the symnimdRiesz operator to discuss a fraction numbemeidr
of differentiation instead of the Laplace operaiorFick's diffusion equation (1.3). This causesutoh
functions with Lévy asymptotics, which also seendéscribe anomalous diffusion.

The Riesz operator is introduced in section 2.30218is elaboration within its mathematical cortex
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The problem with Lévy distributed results is, thtad variance, being calculated theoretically bg,thiverges
for use of infinite integration limits. Thereforéhese integration limits of the momentum integeaks to be co-
ordinated to the dimensions of the experiment folyaphe variance theorem (1.14) when comparing rihéom
measured data.

m 1.3.4. Space and Time Fractional Diffusion Equation

A combination of space and time fractional diffusiequations can take place because of didactiomeas
do the analytical calculation once only and tod/i@lresult as general as possible.

Concerning the classification of diffusive behavieia the variance, this approach for the firsteiseems to
own to much parameters, what can be used to joihduexaminations on theory. By this, the undeditag of
the inhomogenously added equation by Schneideyss (1.26) can be deepened.

m 1.4. Summary

Independently, whether a diffusion equation is palia (1.3), elliptic (1.12), or discrete (1.9)rfthe variance
of the propagator results at least the hypothefsthen proportionality to time, this is normal diffion in the
sense of Einstein's relation. The hyperbolic Cattaequation (1.6) for diffusion only asymptoticaity long
times owns the variance of normal diffusion.

All diffusion equations are linear equations, wisdbllowing from the superposition principle.

For assessment of diffusive processes, in firgirityi serves the variance in its temporal behavidnging
balanced to the start variance. This kind of expenital evaluation can be compared directly to #méeance of
the theoretical derived propagator.

Diffusive processes own a variance increasingtitnmonotonously with time. The variance of the diffusion
propagator satisfies a power law in time.

To model anomalous diffusion, most easily fractlaea Fick's diffusion equations can be used, wiécthe
focal point of this elaboration in its further cear



