
Chapter 1

Description of Diffusion

‡ 1.1. Description of Normal Diffusion

ü 1.1.1. Plan of Action

In history there are several kinds to describe diffusion. In the following only some of them shall be introduced

to choose more detailed, before anomalous diffusion is described.

ü 1.1.2. Fick's Diffusion

ü 1.1.2.1. Fick's Laws

Additional to the continuity equation

(1.1)  ∂t r@x, tD + ∂x j@x, tD = 0 ,

with  mass  density  r@x, tD  and  stream  density  j@x, tD  in  the  coordinates  x  and  t,  a  so-called  constitutive  or

essential equation is needed, which establishes a further connection between stream density and mass density.

Due to Fick the first of Fick's laws (see [Metz1996], equation (6.2), page 74) yields the following relation:

(1.2)  j@x, tD = -l ∂x r@x, tD .

The diffusion coefficient l,  being contained in Fick's first law (1.2),  is a material quantity, which can change

spatially by the dimensions of the experiment and also even temporally by chemical reactions within the same.

These effects shall not be the focal point of this elaboration, therefore in the following the diffusion parameter

l almost everywhere is a real material constant in space and time.



By substitution of Fick's first law (1.2) into the continuity equation (1.1) Fick's second law is following, which

already is considered to be a diffusion equation, here being completed by an arbitrary stearing quantity s@x, tD:

(1.3)  ∂t r@x, tD - l ∂x xr@x, tD = s@x, tD .

If  external  influences  are  absent  (stearing  quantity  s@x, tD ∫ 0),  then  also  the  continuity  equation  (1.1)  owns

neither  sources  nor  hollows,  thus  the  spatial  integral  of  the  mass  density  r@x, tD  represents  a  temporal

conservation  quantity.  Therefore  in  theory  the  density  usually  is  normalized.  Equation  (1.3)  also  occurs  in

connection with Fourier's theory of heat conduction, where in this case the mass density r  is replaced by the

temperature T.

ü 1.1.2.2. Propagator of Fick's Diffusion

The propagator of Fick's diffusion equation (calculation see chapter 3 of this elaboration) yields from Dirac's

delta function ([Dir1927], §2, pages 624-627) being the initial value problem:

(1.4)  r@x, tD = i
k
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The Fourier convolution of the factual initial distribution with the propagator yields the general solution of the

homogeneous part of equation (1.3).

ü 1.1.2.3. Normal Distribution and Einstein's Relation

The  propagator  of  Fick's  diffusion  equation is  a  Gaussian bell-curve,  which also  in  statistical  theory owns a

special  importance  ([Acz1961],  section  2.3.5.,  pages  94-97).  In  1809  it  has  been given  by Gauss in  general

with the so-called variance s2, the mean sum of scatter squares, and in this case it is called normal distribution

([BrS1987], section 5.1.2.2.2, page 664):

(1.5)  f @xD = i
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From the equations (1.4)  and (1.5)  by coefficient  comparison directly results  the variance of  Fick's  diffusion

propagator, namely s2 = 2 l t, which is designated as Einstein's relation.

In  general  the  variance  is  calculated  from the  first  three  momenta  of  a  distribution  (see  appendix  A  of  this

elaboration).
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ü 1.1.3. Normal Diffusion due to Cattaneo

In the year 1948 C. Cattaneo in Rome published a paper [Cat1948], wherein a diffusion equation is introduced,

being motivated by molecular kinetics, which is the following ([Cat1948], equation (22), page 94):

(1.6)  ∂t r@x, tD + t ∂t t r@x, tD - l ∂x xr@x, tD = s@x, tD .

Here  a  specific  time  t  occurs,  which  considers  the  finiteness  of  the  characteristic  diffusion  velocity  v.  This

connection  is  indicated  by  Cattaneo  ([Cat1948],  equation  (23),  page  94)  and  explicitly  repeated  by  T.  F.

Nonnenmacher ([Non1980], text after formula (4), page 363):

(1.7)  l = v2 t .

A  connection  to  Boltzmann's  impact  dynamics  is  given  in  these  elaborations,  where  t  is  proportional  to  the

finite time between two impacts.

If a limit t Æ 0 is calculated in such a way, that the diffusion coefficient l remains constantly during this, then

the characteristic velocity v becomes infinitely large, and Fick's diffusion equation (1.3) is regained.

The equation by Cattaneo is of hyperbolic type and quite difficult to be solved. Not yet the complete momenta

of  the  propagators  are  found  in  literature  ([dJag1980],  [CM1997],  [MN1998]).  The  variance  of  the  static

solution propagator (with start velocity zero) here is given without derivation:

(1.8)  s2 = 2 l Ht - tL + 2 l tExp@-t ê tD
(calculation procedure: see chapter 2).  This means due to the variance theorem (1.14),  that the solution of the

static  Cattaneo  propagator  is  given  as  a  Fourier  convolution  of  two  functions.  For  short  times  the  variance

starts  by  the  variance  (1.19)  of  a  wave  equation,  which  during  this  elaboration  is  named  as  wave  variance:

s2 =
l
ÄÄÄÄÄ
t
 t2, and for long times t >> t it passes over to a time shifted Fickian diffusion variance s2 = 2 l t.
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A comparison of the Cattaneo variance (1.8), starting as wave variance s2 =
l
ÄÄÄÄÄ
t
 t2, to the usual wave variance

(1.19) yields an interpretation of the characteristic velocity in the diffusion parameter (1.7) as wave expansion

velocity v.

From the mathematical  point of view the Cattaneo equation does not distinguish from the so-called telegraph

equation  ([HT1956],  §204,  equations  (8)  and  (9),  page  480),  which  can  be  derived  in  electrodynamics  to

describe a damped electromagnetic wave. However,  the phenomenons damped wave and diffusion eventually

are not the same. Therefore also further diffusion models can be searched for.

ü 1.1.4. Normal Diffusion due to Diffusion Principle

ü 1.1.4.1. Verbal Formulation of Diffusion Principle

Analogously  to  Huygens'  principle  for  wave  expansion  ([BeS1945],  I ,  §76,  pages  362-369)  from  the  year

1678, also a diffusion principle can be described, which could be the following:

Each point of a matter distribution is starting point of a new elementary matter redistribution. The elementary

matter redistribution takes place in such a way, that the space being available is used for it. The superposition

of all new elementary matter redistributions yields the new matter distribution.

The essential  difference  to  the  principle  of  wave expansion consists in the fact,  that  no envelope of  the new

elementary processes takes place.
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ü 1.1.4.2. Superposition Possibility

The  same of  diffusion  principle  and  of  Huygens'  principle  for  wave  expansion  is,  that  the  separation  of  the

dynamics into elementary, singular processes is possible, which themselves are very simple. Therefore global

diffusion is described by local conflusion (1.9) (Latin confluere: flow together).

For  mathematical  description  of  superposable  (being able  to  be  superimposed)  phenomenons  serve  linear

equations ([Stoe1998], 7.1.1.7, page 201). The superposition possibility of diffusive processes in the following

is estimated to be given, wherefore furtheron only linear equations are discussed. Also the equations (1.3) and

(1.6)  are  linear  and  therefore allow the additional consideration of  stearing quantities.  In  literature also  non-

linear diffusion equations occur (for example [HD1998]), which are not followed up as part of this elaboration.

ü 1.1.4.3. Difference Equation

The given diffusion principle in the easiest case can be modeled as linear difference equation in a single space

dimension, which can be generalized to problems of radial symmetry. With the density distribution r@x, tD and

a  characteristic  velocity  v,  being  introduced  to  conserve  all  physical  units,  and  the  time  difference  Dt,  this

approach yields the following equation for an elementary process:

(1.9)  
r@x- vDt, t -DtD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
+

r@x+ vDt, t - DtD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
= r@x, tD .

During  diffusion  the  movement  of  a  singular  particle  almost  always  takes place  in  a  zigzag course,  thus  the

maximum velocity of diffusion within the context of this model is given by the global sound velocity v (wave

expansion velocity) of the system. Both effects (diffusion and wave) can be understood as caused by singular

impacts.

If the atomic character of matter is to be stressed, then one must consider, that between two singular impacts

really a finite duration time, namely Dt > 0,  takes place. For this kind of consideration and also for computer

simulations, equation (1.9) is a possible access to the description of diffusion events, which of course can be

improved.
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ü 1.1.4.4. Solution to the Difference Equation

The  given  difference  equation  (1.9)  in  the  sense  of the  scanning  theorem in  telecommunications  technology

([Mar1986], chapter 6, pages 127-131) owns a definite solution for an initial value problem, which starts by a

standardized total distribution at x = 0 and at time t = 0:

(1.10)  r@x, tD = 1
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The  verification of  the binomial  distribution (1.10)  as  solution to  the  diffusion equation (1.9)  can be done by

elementary calculation. The norm constant furthermore has been set to 1ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
2 vDt

.

The  variance  of  the  symmetrical  binomial  distribution  (1.10)  is  known,  if  the  coefficients  are  not  weighted:

s2A2-n  
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4
.  The  use  of  the  substitution  x Æ 2 v Dt k  for  the  variance  calculation  of  the

standardized binomial distribution (1.10) yields:

(1.11)  s2 =
1
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= Dt v2 t = 2 l t ,

where the last mentioned identity follows with Dt = 2 t in relation (1.7).
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ü 1.1.4.5. Transition to a Differential Equation

If  the difference equation (1.9) is  interpreted in such a way, that Dt  shall  be the variable of a Taylor's series

(thus  the  solution  function  be  steady  and  differentiable),  then  the  Taylor's  series  of  this  difference equation

yields the following differential equation with error order O@Dt2D:

(1.12)  ∂t r@x, tD - Dt
ÄÄÄÄÄÄÄÄ
2

∂t t r@x, tD - v2 Dt
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
 ∂x xr@x, tD = s@x, tD .

This is an elliptic modification of Cattaneo's equation (1.6), where the shape of the diffusion coefficient (1.7) is

confirmed for Dt = 2 t. Also the modified Cattaneo equation (1.12) can only be solved heavily. Here, even the

variance calculation of the static solution propagator hides severe difficulties.

ü 1.1.5. Further Proceeding

ü 1.1.5.1. Limit Calculation to Fick's Diffusion Equations

The  limit  calculation  t Æ 0  with  conversation  of  the  diffusion  coefficient  l  in  equation  (1.7)  changes

Cattaneo's  equation  (1.6)  into  Fick's  diffusion  equation  (1.3).  The  same  result  is  received  by  the  limit

calculation Dt Æ 0, if the expansion velocity v in the modified Cattaneo equation (1.12) runs to infinity in such a

way, that the diffusion parameter l remains constant due to equation (1.7).

By this limit calculation the solution (1.10) turns to the propagator (1.4) of Fick's diffusion:

(1.13)  
P@x, tD =

i
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In this connection the author thanks Mr. Professor Dr. P. Chvosta (Prague) for a detailed discussion about the

simultaneous limit calculation (1.13).
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ü 1.1.5.2. Hypothesis on Variance

The  variance  (1.11)  of  the  binomial  distribution  (1.10)  is  equal  to  the  variance  of  Fick's  diffusion  propagator

(1.4), namely s2 = Dt v2 t = 2 l t.

Therefore the normal diffusion owns independently of the question about the finiteness or boundlessness of the

characteristic  wave  expansion  velovity  v  a  uniform  variance  s2,  which  increases  proportionally  to  the

measuring time t. In the elaborations of A. Einstein, who claimed the finiteness of wave expansion velocity to

be essential,  thus no internal contradiction is found, since Einstein's relation (1.11) is valid not only for  Fick's

diffusion propagator, but also for the discrete binomial distribution. A propagator starts at time t Æ 0 as Dirac's

delta function d@xD, the variance of which is zero. The variance does not tell anything about the precise shape

of a distribution function.

The  hypothesis  suggests  itself,  that  the  elliptic  modification  of  Cattaneo's  equation  (1.12)  compared  to  the

parabolic Fickian diffusion equation (1.3) or the difference equation of the binomial distribution (1.9) does not

own a fundamentally different variance. Due to Einstein's relation all three equation types describe the normal

diffusion as part  of a corresponding model.  The hyperbolic Cattaneo equation (1.6) for  long times also owns

the variance of normal diffusion.

The  naming  of  partial  linear  differential  equations of  2nd  order  after  conic  sections  is  related  to  the

characteristics method ([HT1956], §146, pages 282-286), which shall not be applied as part of this elaboration.
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‡ 1.2. Classification of Diffusion

ü 1.2.1. Comparing Measured Data with Theoretical Propagators

ü 1.2.1.1. Problem

A  theoretical  propagator  always  starts  with  a  Dirac's  delta  function  as  initial  value  problem.  However,  this

initial value problem cannot strictly be realized in any experiment.

Rather the general solution of a partial linear differential equation (at least for constant coefficients) arises as

Fourier convolution of the time dependent propagator with the time independent initial distribution.

These considerations question first the classification of diffusive processes via Einstein's relation, because not

the propagator is measured itself, but a Fourier convolution with this propagator only.

Therefore a direct comparison of measured data to theoretically calculated propagators is not easy.

ü 1.2.1.2. Variance Theorem

In  this  connection,  the  variance  theorem  (1.14)  is  of  special  importance  (proof  see  appendix  A  of  this

elaboration), which enables a universal comparison of theoretical propagators of linear equations to measured

data.  It  describes  the  variance  of  a  Fourier  convolution  as  sum  of  the  variances  of  their  convolution

components:

(1.14)  s2@ f @xD *g@xDD = s2A‡
-•

•

f @x- yD g@yD ‚ yE = s2@ f @xDD +s2@g@xDD .

The system, being described via a linear equation, is described by a Fourier convolution of the time dependent

propagator p@x, tD and the time independent initial distribution f @x, t0D. The Fourier convolution with a Dirac's

delta function (see chapter 2 of this elaboration) always yields the other convoluted function:

(1.15)  ‡
-•

•

d@x- yD g@yD ‚ y= g@xD .
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With both insights (1.14) and (1.15) the variance of the propagator follows via a corresponding variance balance

of measured data:

(1.16)  s2@ f @x, t0D * p@x, t - t0DD -s2@ f @x, t0D * d@xDD = s2@p@x, t - t0DD .

Thus the comparison of theory to measurement is quite easy via the variance.

ü 1.2.1.3. Importance of the Variance Theorem

The  variance  of  measured  data  always  can  be  calculated.  The  variance  of  the  theoretical  function  can  be

calculated only, if the function values of the spatial interval can be set to zero from a clearly definable position

on, being outside of the measurement area.

A  theoretical  function  describes  measured  data  particularly  well,  if  the  numerical  value  of  the  theoretical

function outside of  the measuring area is as good as zero.  In this case,  the momentum integrals and also the

variance usually still without problems can be calculated with infinite integration limits.

The  variance  theorem  (1.14)  gives  a  universal  access  to  enable  comparison  of  the  dynamics  of  complex

(complicated)  linear  systems  to  corresponding  measured  data.  Especially  the  falsification  of  a  theory  is

possible via the variance balance (1.16).

In this way, many different theories can be compared to real measured data rapidly and reliably.

ü 1.2.2. Classification of Transport Processes via Variance

ü 1.2.2.1. Confirmation of Einstein's Relation

In  case of  normal  diffusion,  the  variance balance  (1.16)  leads to  a confirmation of  Einstein's  relation also  for

measured data, which does not start with variance zero. Here, the question on the finiteness of the characteristic

velocity v is not to be discussed completely!

Thus for this elaboration, there is sufficiency to model the variants to Fick's diffusion law (1.3) in such a way,

that  they  both  can  be  solved  as  easy  as  possible  and  satisfy  an  expanded  Einstein's  relation,  which  also

describes anomalous diffusion.

Mainly these variants are given in shape of fractional differential equations.  Often their solution propagators

are Fox's H-functions (see chapter 2 of this elaboration) only, which are quite pleasant from the analytical and

numerical point of view.

24 Chapter 1. Description of Diffusion



ü 1.2.2.2. Variance of the Static Wave Propagator

The wave equation

(1.17)  ∂t t r@x, tD - v2 ∂x xr@x, tD = 0

also owns a time dependent variance of the static propagator:

(1.18)  r@x, tD = J d@x- v tD + d@x+ v tD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

2
N .

The mean scatter square increases clearly by time square:

(1.19)  s2 = v2 t2 .

ü 1.2.2.3. Classification Scheme of Diffusive Processes

Normal  diffusion  stands  out  for  proportionality  of  the  static  propagator  variance  s2  to  the  measuring time t
(Einstein's  relation)~independently  of  the  shape  of  the  initial  value  problems  and  of  the  existence  of  a

maximum expansion velocity v.

A general diffusive process stands out for a stricly monotonously increasing variance of the static propagator,

where  the  growth  is  described  by  a  power  law  in  time  ([WGMN1997],  section  V,  pages  103-104;

[ZSKN1999], section I , page 1292):

(1.20)  s2~ t a .

The  power  a  of  the  diffusion  variance  (1.20)  enables  the  following  classification,  which  shall  be  valid

furthermore:

0 < a < 1: anomalously slow diffusion (subdiffusion),

a = 1: normal diffusion (Einstein's relation),

1 < a < 2: anomalously rapid diffusion (superdiffusion),

a = 2: ballististic transport (wave expansion),

a > 2: turbulent transport.
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To  get  the  power  a,  the  variance  balance  is  drawn  double  logarithmic  as  straight  line,  this  is

Ds2 = s2@tD -s2@t0D  over  t - t0.  Especially,  if  the  variance  balance  (1.16)  is  missing,  such  kinds  of  double

logarithmic figures cause fallacies. The gradient a of the resulting straight line in non-distorted representation

corresponds to the power a of ta.

All processes, the propagator variances of which cannot be described by a power law in time, or which even do

not increase strictly monotonously, are not to be considered as diffusive processes. Among these for example is

the car distribution in Ulm, or the distribution of ants in and around an anthill.

ü 1.2.3. Further Aspects of Diffusion Description

ü 1.2.3.1. How to Deal with Drift in Dynamics

It  is  controversial,  whether  for  diffusion  description  also  a  temporal  change  of  the  expectation  value of  the

distribution  function  is  allowed.  Certainly,  this  kind  of  considerations  both  will  not  change  anything of

variance,  and  it  prevents  a  radial  symmetric  generalization  from  one  space  dimension  to  several  space

dimensions,  because  this  generalization  at  presence of  drift  leads  to  sources  and  hollows  of  the  transported

material and thus contradicts to the originally set continuity equation (1.1).

The  discussion  of  drift  terms,  how  there  is  popularity  especially  as  part  of  the  Fokker  Planck  equations

([Ris1984], section 1.2.1, page 4-5; [vKam1984], chapter X.3, pages 291-293), therefore is not the main focus

of the elaboration presented here.

Rather,  as part  of this  elaboration the gravity  center theorem is  set to  be given and also to  be aspired to the

experiment.  Certainly,  drift  can  change  the  shape  of  a  distribution  function  temporally,  while  the  variance

should be independent thereof.

Now, to enable comparison of two different theories with each identical variance behaviour to measured data,

the  missing  of  a  drift  (temporal  change  of  the  expectation  value)  is  to  be  proven  by  measurement  at  the

experimental set-up, before one of both theories can be prefered.

ü 1.2.3.2. Generalization to Several Space Dimensions

Due  to  Rayleigh  ([Fel1971],  section  I.10(e),  pages  32-33),  an  isotropic  (independent  of  direction)  dynamics

clearly can be projected to a single space dimension.
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The  oldest  example  for  this  kind  of  description  comes from L.  Euler  when discussing the  three-dimensional

wave equation in comparison to the one-dimensional one ([HT1956], equations (26)-(30), page 421 and page

465).

In  this  case,  the  corresponding  Laplace  operator  changes  according  to  the  transformation  f@r, tD = P@r, tD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

f @rD ,

where f @rD gives the corresponding distance law, so in case of a spherical wave f @rD = è!!!!!!!!!!!!!
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This  way,  radial  symmetric,  linear  equations  with  complicated,  analytical  coefficients  clearly  turn  to simple

linear equations in one space dimension only.

With  two  space  dimensions  or  with  distance  laws  of  diffusion,  Euler's  trick  (1.21)  is  not  use,  because from

deductive  mathematics  follow  different  results  (for example  [Metz1996],  equation  (6.4),  page  74),  which

prevent the turn to a one-dimensional equation.

The specific distance law for the dynamics on a spherical surface for example yields

(1.22)  f @rD = 2 pR ÀSinA r
ÄÄÄÄÄÄ
R
E À ,

where r describes the arc distance on the spherical surface, and R the radius of the sphere. The corresponding

Laplace operator for wave or diffusion has not yet been derived on an independent way until now.

An  essential  difference  between  a  wave  and  diffusion  in  several  dimensions  consists  in  the  fact,  that  for

diffusion the spatial integral over the density is a conservation quantity (often the total mass), while for a wave

the spatial  integral  over  the square of  the wave solution is  a conservation quantity (usually the total  energy).

This difference does not attract attention for the one-dimensional consideration.

In order not to be out of proportion of this elaboration, during the further course discussions mainly are done in

a single space dimension only, which can be transfered to radial symmetric problems at least by use of Euler's

trick (1.21).

The  combination  of  the  distance  law  (1.22)  with  Euler's  trick  (1.21)  can  be  discussed  as  part  of  an  own

hypothetical  model,  while  other  generalizations  of  the  Laplace  operator  also  own  other  solutions  as  part  of

other models.
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‡ 1.3. Description of Anomalous Diffusion

ü 1.3.1. The Formula by Wei, Bechinger, and Leiderer

In their paper [WBL2000] Wei Q.-H., C. Bechinger, and P. Leiderer give a normal distribution with a variance

describing anomalous diffusion. This distribution reads ([WBL2000], equation (2), page 627):

(1.23)  r@x, tD = i
k
jjjjj

ExpA- x2

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ4 F ta EÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄè!!!!!!!!!!!!!!!!!
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y
{
zzzzz .

In the  mentioned  paper  also  further  sources are cited for  this  distribution,  but  not  on the basis of  a dynamic

equation.  Rather  this  approach is  purely heuristic, by which at  least  the  phenomenon anomalous diffusion is

described correctly concerning variance.

The authors of this paper kindly put their measured data for further evaluation at the author's disposal as part of

this elaboration.

ü 1.3.2. Time Fractional Diffusion Equations

In  their  paper  [SWy1989]  Schneider  and  Wyss  give  a  modified  Fickian  diffusion  equation,  which  uses

Riemann's integral operator and also describes anomalous diffusion.

Riemann's  integral  operator  interpolates  the  several  orders  of  integration  and  differentiation.  It  is  defined

sensibly for all complex differential orders b. In the software package FractionalCalculus just the differential

operator of Riemann and Liouville is available ([SKM1993], equation (2.32), page 37), which for a = 0 turns

to Riemann's integral operator of the integration order -b:

(1.24)  

Da, x
b @ f @xDD := J ‚

ÄÄÄÄÄÄÄÄÄÄ
‚ x

Nh 1
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
G@h - bD  ‡a

x f @yD
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄHx- yLb-h+1

 ‚ y ,

h = 9 @Re@bD D + 1 Re@bD ≥ 0 ,

0 Re@bD < 0 .

The  Riemann  Liouville  operator  in  purely  integral  representation  (Re@bD < 0)  at  a = 0  gives  a  Laplace

convolution  with  a  power  function.  The  physical  motivation  of  the  Riemann  Liouville  operator  is  discussed

time and again. A possible access is indicated in section 3.1.1 of this elaboration.
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Since the Laplace transformation of  a  linear  equation yields the initial  value problems,  there are all kinds of

analytical  difficulties  to  set  up  a  time fractional equation  with  consistent  initial  value  problem.  This  kind  of

problems  have  already  been  dealed  with  successfully by  the  work  of  Schneider  and  Wyss  ([SWy1989],

equation (1.1)-(1.5),  page 134),  Gloeckle ([Gloe1993],  section 3.3,  page 28-33),  and  finally Wyss and Wyss

[WW1999].

The addition of an inhomogenous stearing force s@x, tD  to the equation by Schneider Wyss yields the following

representation of the time fractional diffusion equation with 0 < b £ 1:

(1.25)  rt@x, tD - lD0, t
1-b@rx x@x, tDD = s@x, tD .

The  integrated  representation  of  this  equation  contains  all  initial  value  problems  and  does  not  cause  any

problems also concerning Laplace transformation, here because of b > 0 (see [SWy1989], equation (2.1), page

135):

(1.26)  r@x, tD - ‚
n=0

-1-@-bD
∂n r@x, t Æ 0D
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂xn
 

tn
ÄÄÄÄÄÄÄÄÄ
n!

- lD0, t
-bA ∂2 r@x, tD

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
∂x2

E =D0, t
-1-@-bD@s@x, tDD .

In  this  connection  has  been  used,  that  Riemann's  integral  operator  is  a  generalization  of  Cauchy's  iterated

integral ([Non1996], chapter 2.2.2, page 19). The Gaussian step function ([Wol1997], chapter 3.2.2, function

Floor@ D, page 775) or Gaussian bracket function is marked by angle brackets @ D, without a leading symbol.

Both  representations  (1.25)  and  (1.26)  of  the  time  fractional  diffusion  equation  interpolate  between  Fick's

diffusion equation (1.3) and the wave equation (1.17) in a single space dimension. Therefore the variance of the

propagator of equation (1.26) also clearly yields a temporal power law s2~ tb  to describe anomalous diffusion,

what will be shown more detailed as part of this elaboration (chapter 3) and on the basis of measured examples

(chapter 4 and 5).

ü 1.3.3. Space Fractional Diffusion Equations

In their paper West et al. [WGMN1997] use the symmetric Riesz operator to discuss a fraction numbered order

of  differentiation  instead  of  the  Laplace  operator  in  Fick's  diffusion  equation  (1.3).  This  causes  solution

functions with Lévy asymptotics, which also seem to describe anomalous diffusion.

The Riesz operator is introduced in section 2.3.2.6 of this elaboration within its mathematical context.
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The problem with Lévy distributed results is, that the variance, being calculated theoretically by this, diverges

for use of infinite integration limits. Therefore, these integration limits of the momentum integrals are to be co-

ordinated to the dimensions of the experiment to apply the variance theorem (1.14) when comparing theory to

measured data.

ü 1.3.4. Space and Time Fractional Diffusion Equations

A combination of space and time fractional diffusion equations can take place because of didactic reasons to

do the analytical calculation once only and to yield a result as general as possible.

Concerning the classification of diffusive behaviour via the variance, this approach for the first time seems to

own to much parameters, what can be used to join further examinations on theory. By this, the understanding of

the inhomogenously added equation by Schneider and Wyss (1.26) can be deepened.

‡ 1.4. Summary

Independently, whether a diffusion equation is parabolic (1.3), elliptic (1.12), or discrete (1.9), for the variance

of the propagator  results  at  least  the hypothesis of  the proportionality to  time, this  is  normal diffusion in the

sense of Einstein's relation. The hyperbolic Cattaneo equation (1.6) for diffusion only asymptotically for long

times owns the variance of normal diffusion.

All diffusion equations are linear equations, what is following from the superposition principle.

For  assessment  of  diffusive  processes,  in  first  priority  serves  the  variance  in  its  temporal  behaviour,  being

balanced to the start variance. This kind of experimental evaluation can be compared directly to the variance of

the theoretical derived propagator.

Diffusive processes own a variance increasing strictly monotonously with time t. The variance of the diffusion

propagator satisfies a power law in time.

To model anomalous diffusion, most easily fractionalized Fick's diffusion equations can be used, which is the

focal point of this elaboration in its further course.
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