
Introduction to Algebra

Norbert Suedland∗

July 3, 2020

Abstract

An introduction to algebra shall enable the approach also to those, who somewhen have lost
the trail in school, or who have joy in direct calculation ways. The threefold proof, which
is embodied in at least three divers cultures, thereby enables to keep the overview, and to
find own mistakes as quickly as possible.
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1 Of all Good Things are Three

1.1 German Proverb
An old German proverb reads:

Aller guten Dinge sind drei—Of all good things are three.

This means, if something is correct, then exist at least three independent approaches to it,
like each mountain summit has got at least three ridges. The aforementioned proverb has
been handed down in German without date and belongs like the German language and the
local landscape names to the oldest, cultural reports in Germany.
But now, also the German proverb is just a single source, thus it’s worth looking for further
sources with the same content.

1.2 Chinese Character for Quality
Already early, the Chinese people has handed down with its language very many characters,
which consist as symbol collection of more easier symbols and sometimes explain contexts,
which were known at that time. So, the traditional, Chinese character 品1 for range, class,
personality2 consists of 3 characters 口3 for mouth, opening, persons4:

品是三口5.

This sentence means:

Quality is based on three mouths.

These characters and their corresponding meaning are used without change also in Japan6

and in the modern China7.

1.3 Argumentation due to Moses
In Israel since Moses8 there is the principle, that an argumentation being on trial is valid
by the combination of the mouth of two or three witnesses:

One witness shall not rise up against a man
for any iniquity, or for any sin,
in any sin that he sinneth:
at the mouth of two witnesses, or at the mouth of three witnesses,
shall the matter be established.

1pronunciation: pin3
2[1924Rüd], number 4321, page 425
3pronunciation: kou3
4[1924Rüd], number 3243, page 334
5pronunciation: pin3 shi4 san1 kou3
6[1994Had], number 230 and 54, page 99 and 74
7[1993XYCGZZDYCKN], page 620 and 471
8[1994AV], Deuteronomy 19:15
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This principle is found all over the whole Bible. So it is mentioned as base of God’s Trinity9,
where only witnesses of the argumentation are mentioned, and not 3 persons10:

7. For there are three that bear record in heaven,
the Father, the Word, and the Holy Ghost: and these three are one.
8. And there are three that bear witness in earth,
the Spirit, and the water, and the blood: and these three agree in one.

The lastest since the Enlightment, the argumentation due to Moses is scorned in Europe,
because in contrast to God, each human is a single witness only and needs the confirmation
by other witnesses. Therefore humans, who thing themselves to be important, argue quite
differently, and unfortunately they wait only sometimes, until their results are confirmed
independently by the second and the third side. Also such variants are not forbidden, but
often enough they lead into the self–elected fallacy.
At scientific conferences usually the researchers tell their current position to the collegues
for discussion. During this can occur, that they are confirmed by collegues with similar
results, or however, that the others localize the fundamental errors. In no science there is a
tradition to vote democratically for correctness. Rather the principle is valid:

Whosoever does not bear to be smiled at by the collegues,
the same should not do research.

So, Nikolai Kopernik11 held his life’s work in his hands not before being on his death–bed.

1.4 Conclusion for the Assessment of a Calculation
Thus now 3 independent sources are proven, which use the combination of 3 witnesses for
the correctness of a statement. Being on courts, the argumentation may be valid less strictly
as in research, instruction, and industrial quality management, therefore on courts Moses
prescribes the coincidence of at least two witnesses.
Here, the insight, won by this, is used to exercise and rule enough variants to solve an
algebraic task. In all fields, an expert is recognized by knowing about alternatives. These
alternatives are presented by the principle of the 3 solution ways and enable to deepen the
lesson by further calculation ways.
On the question, whether such thing would be possible in general, Jesus Christ gives the
following information12:

If thou canst believe, all things are possible to him that believeth.

Believing mainly means in the Bible: to be told. Therefore, the search for the three solution
ways is worth to be done. How long the search will last, stays to be exciting.

9The notion triple unity occurs quite late in theology and claims the mathematical nonsense: 3 = 1 ([2007Ryr],
chapter 8.II.c, page 82). Already Isaac Newton had problems with this non–biblical subtlety ([2009GB], chap-
ter 10, page 114), which is based on the scholastic dogmatizing of Aristoteles during the Middle Ages.

10[1994AV], 1 John 5:7–8
11also known as Copernicus, [1953VEB], entry Kopernik(us), page 542
12see [1994AV], St. Mark 9:23
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2 Algebraic Equations

2.1 Algebraic Equation of 1st Degree
2.1.1 The Equation

An algebraic equation of first degree is given by the following equation:

a x+ b = 0 (1)

Here, a and b are independent of the yet unknown solution x.

2.1.2 1st Solution Way

Algebra is living by the remaining of the equality sign of an equation, if on each of both sides
the same calculation operation is done. Here, this yields the following calculation steps:

a x = −b ⇔

x = − b
a
. (2)

2.1.3 2nd Solution Way

Another solution way results by substitution13:

x → y − b

a
⇒

a

(
y − b

a

)
+ b = a y − b+ b = a y = 0 ⇔

y = 0 ⇒

x = 0− b

a
= − b

a
. (3)

2.1.4 3rd Solution Way

The third solution way divides the equation by x, solves to 1
x , and then builds the reciprocal:

a+
b

x
= 0 ⇔

b

x
= −a ⇔

1

x
= −a

b
⇔

x = − b
a
. (4)

13replacement
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2.1.5 Checking Calculation

The 3 solution ways lead to the same solution (2), (3) und (4). Whether this solution is
valid, always only shows the checking calculation in the starting equation, here equation (1):

a

(
− b
a

)
+ b = −b+ b = 0 ⇔

0 = 0 (5)

Zero is zero for each choice of all parameters. Thus the equation is solved.
This needed to be shown14.

2.1.6 Ishmael’s Algebra

Ishmael15, the son of Abraham, was sent16 with his mother into the desert17. To survive
there, he needed to handle the food for the journey with care. Subsequently resulted the
arabic numbers, which can reliably deal with arbitrary, huge quantities. As well he searched
for the number18 of camels, which are needed to carry a scheduled commodity amount during
an intended journey duration through a desert. In 1202, the corresponding calculation art
was translated into Latin and expanded by Leonardo da Pisa, called Fibonacci19, and since
then it is written algebra and is pronounced still the same as in Arabic. The solution of the
historic task with world–wide importance begins with 2 equations for 2 unknown variables:

total_burden = load_capacity · camel_number . (6)
total_burden = ware_weight + victual_need · duration · camel_number . (7)

At these equations, the total burden and the camel number are unknown. Now both left
hand sides are the same, thus the right hand sides of both equations are equal:

load_capacity · camel_number
= ware_weight + victual_need · duration · camel_number . (8)

Now, an equality sign stays valid, if on each side of an equation is done the same. This yields
the following rearrangement of equation (8), that yet contains an unknown camel number
only, which is sensible until a maximum duration:

ware_weight = (load_capacity− victual_need · duration) · camel_number ⇔

camel_number =
ware_weight

load_capacity− victual_need · duration
. (9)

The found solution fulfills the equation (8) with the result 0 = 0 and leads from the equations
(6) and (7) in each case to the same total burden:

total_burden =
load_capacity · ware_weight

load_capacity− victual_need · duration
. (10)

14Latin version: quod erat demonstrandum.
15born about 2085 before Christ, died about 1948 before Christ
16[1994AV], Genesis 21:10–21
17Hebrew: arab
18Arabic: al–Djabr means about: The compellingly needed calculation way.
19[1959Mesch], section I 1., page 9–10
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2.1.7 Checking Calculations

In a desert, there is only one trial to check the correctness of a calculation. Therefore, no
fallacies are to be applied here. As alternative calculation way, here the reciprocals of the
equations present themselves:

1

total_burden
=

1

load_capacity · camel_number
. (11)

1

total_burden
=

1

ware_weight + victual_need · duration · camel_number
. (12)

Equating of (11) and (12) leads to the following result:

1 =
ware_weight + victual_need · duration · camel_number

load_capacity · camel_number
⇔

ware_weight
camel_number

= load_capacity− victual_need · duration . (13)

The result (13) can be solved to the result (9), which completes an independent calculation
way.
A third calculation way results by dividing each of the equations (6) and (7) by the camel
number, and then equating them:

load_capacity =
ware_weight
camel_number

+ victual_need · duration ⇔

ware_weight
camel_number

= load_capacity− victual_need · duration . (14)

The result (14) is identical to (13) and leads in each case to the solution (9). Also for this
transition, several variants are possible, either directly, or by solving to the reciprocal of the
camel number and subsequent reciprocal at both sides of the equation.

2.1.8 Importance

This is the beginning of algebra and the trade caravans through the deserts of this earth.
Due to the report of the Holy Scriptures, the career of Ishmael is connected to a divine
blessing, which Abraham asked for his son20:

And as for Ishmael, I have heard thee:
Behold, I have blessed him,
and will make him fruitful,
and will multiply him exeedingly;
twelve princes shall he beget,
and I will make him a great nation.

Therefore, whosoever is sent by others into the desert, the same especially there is able to
experience the blessing of the Most High21.

20[1994AV], Genesis 17:20
21[1994AV], Psalm 84:5–7
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2.2 Algebraic Equation of 2nd Degree
2.2.1 The Equation

An algebraic equation of 2nd degree is given by the following equation:

a x2 + b x+ c = 0 . (15)

Here, a, b, and c are independent of the yet unknown solution x.

2.2.2 1st Solution Way

Here, by the 4 basic arithmetic operations no solution is found, rather a square root must
be calculated, which leads from the fractions to the real valued and even complex valued
numbers. For this at first a reduced equation is built by skilful substitution, which follows
from the binomial theorem:

x → y − b

2 a
⇒

a

(
y2 − b

a
y +

b2

4 a2

)
+ b

(
y − b

2 a

)
+ c = 0 ⇔

a y2 − b y + b y +
b2

4 a
− b2

2 a
+ c = 0 ⇔

y2 =
b2

4 a2
− c

a
⇔

y = ±

√
b2

4 a2
− c

a
⇒

x = − b

2 a
±

√
b2

4 a2
− c

a
. (16)

By correct application, algebra is always applicable to all equations with complex coefficients
and leads via the square root to solutions of the complex numbers, if beneath the root in
equation (16) is found a negative or complex number.

2.2.3 2nd Solution Way

Here, the equation is divided first by x2, and then is calculated analogously to the 1st

solution way, where the solution is found for the reciprocal 1
x :

a+
b

x
+

c

x2
= 0 ⇒

1

x
→ y − b

2 c
⇒

a+ b

(
y − b

2 c

)
+ c

(
y2 − b

c
y +

b2

4 c2

)
= c y2 − b y + b y +

b2

4 c
− b2

2 c
+ a = 0 ⇔

y2 =
b2

4 c2
− a

c
⇔

y = ±

√
b2

4 c2
− a

c
.
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After resubstituting, the reciprocal is built, where roots in the denominator of a fraction
are often transported by corresponding expansion into its numerator:

1

x
= − b

2 c
±

√
b2

4 c2
− a

c
⇔

x =
1(

− b
2 c ±

√
b2

4 c2
− a

c

)
(
− b

2 c ∓
√

b2

4 c2
− a

c

)
(
− b

2 c ∓
√

b2

4 c2
− a

c

) =
− b

2 c ∓
√

b2

4 c2
− a

c

b2

4 c2
−
(
b2

4 c2
− a

c

) =

x =
c

a

− b

2 c
∓

√
b2

4 c2
− a

c

 = − b

2 a
∓

√
b2

4 a2
− c

a
. (17)

The signs before the square root of the solution (17) are swapped in comparison with solution
(16). This circumstance emphasizes the difference between the solution ways. Since the
numbering of both roots is arbitrary, nevertheless the solutions can be compared to each
other.

2.2.4 3rd Solution Way

As 3rd solution way presents itself the quadratic completion, which does not need a substi-
tution, but its generalization is difficult only.

a x2 + b x+ c = 0 ⇔

a

(
x2 +

b

a
x+

b2

4 a2
− b2

4 a2

)
+ c = 0 ⇔

(
x+

b

2 a

)2

=
b2

4 a2
− c

a
⇔

x+
b

2 a
= ±

√
b2

4 a2
− c

a
⇔

x = − b

2 a
±

√
b2

4 a2
− c

a
. (18)

2.2.5 Checking Calculation

The 3 solution ways lead to the same solution (16), (17), and (18). The checking calculation
in the initial equation (15) can be done for both square roots at once:

a

− b

2 a
±

√
b2

4 a2
− c

a

2

+ b

− b

2 a
±

√
b2

4 a2
− c

a

+ c = 0 ⇔

a

 b2

4 a2
∓ b

a

√
b2

4 a2
− c

a
+

b2

4 a2
− c

a

+ b

− b

2 a
±

√
b2

4 a2
− c

a

+ c = 0 ⇔

0 = 0 . (19)

This needed to be shown22.
22Latin version: quod erat demonstrandum.
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2.3 Calculation of Square Roots
2.3.1 Return to the 4 Basic Arithmetical Operations

Although the square roots lead out of the set of the number fractions, their numerical
calculation is always possible via the 4 basic arithmetical operations. This is very interesting,
if only a calculation machine for the 4 basic arithmetic operations23 is available to calculate
the numerical value. The method uses the following connection:

z = (10 a + b)2 = 100 a2 + 20 a b + b2 . (20)

Here, a is each already known numeral sequence24 of the square root
√
z, and b is the next

following decimal digit. From equation (20) can be seen, that the unknown digit b can be
determined the following: (

z − 100 a2
)

: (20 a) ≥ b . (21)

• In relation (21) is valid b > 0, if after subtracting of the already known part a2 is
remaining a rest z − 100 a2 > 0.

• If a rest z − 100 a2 < 0 remains, then b is as long to be decreased by unity, until the
new rest no longer is negative.

• If the rest is z − 100 a2 = 0, then the square root is found correctly and can be
completed by corresponding, yet missing zeros to the final result.

Now, this method is demonstrated by 3 instructive examples:

2.3.2 Example
√
729

The written calculation of the square root causes the following calculation steps:√
729 = 27
−4 = −a2 ⇒ a = 2

329 : (20 · 2) = 8, . . . ⇒ a = 2 , b = 8
−320 = −20 · a · b
−64 = −b2
−55 < 0 ⇒ a = 2 , b = 7
329 repetition
−280 = −20 · a · b
−49 = −b2

0 = 0 ⇒ finish!
The checking calculation yields a confirmation of the result:

27 · 27 =
54
189

= 729
This needed to be shown.

23for example a Chinese abacus
24without decimal point
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2.3.3 Example
√
5

Here, after sufficient calculation steps is to be rounded, because
√

5 is no fraction:√
5 = 2, 2360679 ≈ 2, 236068
−4 = −a2 ⇒ a = 2

100 : (20 · 2) = 2, 5 ⇒ a = 2 , b = 2
−80 = −20 · a · b
−4 = −b2
1600 : (20 · 22) = 3, . . . ⇒ a = 22 , b = 3
−1320 = −20 · a · b
−9 = −b2
27100 : (20 · 223) = 6, . . . ⇒ a = 223 , b = 6
−26760 = −20 · a · b
−36 = −b2
30400 : (20 · 2236) = 0, . . . ⇒ a = 2236 , b = 0
3040000 : (20 · 22360) = 6, . . . ⇒ a = 22360 , b = 6
−2683200 = −20 · a · b

−36 = −b2
35676400 : (20 · 223606) = 7, . . . ⇒ a = 223606 , b = 7
−31304840 = −20 · a · b

−49 = −b2
437151100 : (20 · 2236067) = 9, . . . ⇒ a = 2236067 , b = 9

2.3.4 Example
√
2

Here, after sufficient calculation steps is to be rounded, because
√

2 is no fraction:√
2 = 1, 414213 ≈ 1, 41421
−1 = −a2 ⇒ a = 1

100 : (20 · 1) = 5 ⇒ a = 1 , b = 4
−80 = −20 · a · b
−16 = −b2

400 : (20 · 14) = 1, . . . ⇒ a = 14 , b = 1
−280 = −20 · a · b
−1 = −b2
11900 : (20 · 141) = 4, . . . ⇒ a = 141 , b = 4
−11280 = −20 · a · b
−16 = −b2
60400 : (20 · 1414) = 2, . . . ⇒ a = 1414 , b = 2
−56560 = −20 · a · b
−4 = −b2
383600 : (20 · 14142) = 1, . . . ⇒ a = 14142 , b = 1
−282840 = −20 · a · b

−1 = −b2
10075900 : (20 · 141421) = 3, . . . ⇒ a = 141421 , b = 3

The checking calculations with the rounded results confirm quite precisely the calculation
method.
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2.3.5 Iteration due to Isaac Newton

Isaac Newton found a further calculation way, which even for complex numbers allows to
calculate the root quite simply. To understand this solution way, the differential calculus
is needed. With this, the derivative of a function gives the gradient of the same at the
considered point x. This gradient is built as limit25 of a differential quotient :

f ′(x) := lim
∆x→ 0

f(x+ ∆x)− f(x)

∆x
, (22)

f ′(x) := lim
∆x→ 0

f(x)− f(x−∆x)

∆x
, (23)

f ′(x) := lim
∆x→ 0

f(x+ ∆x)− f(x−∆x)

2 ∆x
. (24)

If all 3 variations (22), (23), and (24) at the position x are the same, then the function f(x)
is continuous at this position x, for the other cases alternative calculation ways are to be
used to determine the gradient for a certain direction.
The derivative of the square of a function f(x) yields:

(
f(x)2

)′
= lim

∆x→ 0

f(x+ ∆x)2 − f(x)2

∆x
=

= lim
∆x→ 0

(f(x+ ∆x) + f(x))
f(x+ ∆x)− f(x)

∆x
= 2 f(x) f ′(x) , (25)(

f(x)2
)′

= lim
∆x→ 0

f(x)2 − f(x−∆x)2

∆x
=

= lim
∆x→ 0

(f(x) + f(x−∆x))
f(x)− f(x−∆x)

∆x
= 2 f(x) f ′(x) , (26)(

f(x)2
)′

= lim
∆x→ 0

f(x+ ∆x)2 − f(x−∆x)2

2 ∆x
=

= lim
∆x→ 0

(f(x+ ∆x) + f(x−∆x))
f(x+ ∆x)− f(x−∆x)

2 ∆x
=

= 2 f(x) f ′(x) . (27)

The derivative of x yields:

x′ = lim
∆x→ 0

x+ ∆x− x
∆x

= lim
∆x→ 0

1 = 1 , (28)

x′ = lim
∆x→ 0

x− (x−∆x)

∆x
= lim

∆x→ 0
1 = 1 , (29)

x′ = lim
∆x→ 0

(x+ ∆x)− (x−∆x)

2 ∆x
= lim

∆x→ 0
1 = 1 . (30)

Analogously follows the derivative of a constant y =
(√
y
)2, being independent of x, where

now the Leibniz notation is necessary to build the correct limit:

dy

dx
= lim

∆x→ 0

y − y
∆x

= lim
∆x→ 0

y − y
2 ∆x

= 2
√
y lim

∆x→ 0

√
y −√y
∆x

= lim
∆x→ 0

0 = 0 . (31)

Also this result can be received by three calculation ways, which distinguish from each other.
25Latin: limes
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To get the zero position xN of the equation f(x) − y = 0, Newton calculates the following
iteration26:

xn+1 = xn −
f(xn)− y
f ′(xn)

, (32)

√
y = xN = lim

n→∞
xn+1 = lim

n→∞

(
xn −

x2
n − y
2xn

)
= lim

n→∞

(
xn
2

+
y

2xn

)
. (33)

Therefore here, the calculation method arranges, that both summands are about equal sized
to break the iteration yet before n = ∞ to get the result in very good approximation.

2.3.6 Example
√
729

For the case
√

729 results with the starting value x0 = 1, what can also be calculated by a
pocket calculator for accountancy27:

x1 =
1

2
+

729

2
= 365

x2 =
365

2
+

729

730
= 183, 49863

x3 = 93, 735706

x4 = 50, 756446

x5 = 32, 559577

x6 = 27, 474651

x7 = 27, 004100

x8 = 27, 000000

x9 = 27 (34)

Here, the difference of the last iteration steps is even zero, therefore the solution has been
found exactly.
As third solution way the root of the reciprocal 1

y presents itself, this leads with the starting
value x0 = 1 to the following iteration due to Newton:

1
√
y

= xN = lim
n→∞

xn+1 = lim
n→∞

(
xn −

x2
n − 1

y

2xn

)
= lim

n→∞

(
xn
2

+
1

2xn y

)
.

x1 = 0, 5006859

x2 = 0, 2517128

x3 = 0, 1285812

x4 = 0, 0696248

x5 = 0, 0446633

x6 = 0, 0376881

x7 = 0, 0370427

x8 = 0, 0370370

x9 = 0, 0370370 ≈ 1

27
(35)

26repetition, see [1987BSGZZ], section 7.1.2.3., page 744–745
27without square root function, but with memory capacity
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2.3.7 Example
√
5

For the case
√

5 results with the starting value x0 = 1, what can also be calculated by a
table calculation program28:

x1 =
1

2
+

5

2
= 3

x2 =
3

2
+

5

6
= 2, 3333333

x3 = 2, 2380952

x4 = 2, 2360689

x5 = 2, 2360680

x6 = 2, 2360680 ≈
√

5 (36)

Here, the difference of the last iteration steps is almost zero, therefore the solution has been
found as a good approximation.
As third solution way the root of the reciprocal 1

y presents itself, this leads with the starting
value x0 = 1 to the following iteration due to Newton:

1
√
y

= xN = lim
n→∞

xn+1 = lim
n→∞

(
xn −

x2
n − 1

y

2xn

)
= lim

n→∞

(
xn
2

+
1

2xn y

)
.

x1 = 0, 6

x2 = 0, 4666667

x3 = 0, 4476190

x4 = 0, 4472138

x5 = 0, 4472136

x6 = 0, 4472136 ≈ 1√
5

(37)

2.3.8 Example
√
2

For the case
√

2 results with the starting value x0 = 1, what can also be calculated by an
own calculation program with the wanted accuracy:

x1 =
1

2
+

2

2
= 1, 5

x2 = 1, 4166667

x3 = 1, 4142157

x4 = 1, 4142136

x5 = 1, 4142136 ≈
√

2 (38)

Here, the difference of the last iteration steps is almost zero, therefore the solution has been
found as a good approximation.

28like Microsoft Excel
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As third solution way the root of the reciprocal 1
y presents itself, this leads with the starting

value x0 = 1 to the following iteration due to Newton:

1
√
y

= xN = lim
n→∞

xn+1 = lim
n→∞

(
xn −

x2
n − 1

y

2xn

)
= lim

n→∞

(
xn
2

+
1

2xn y

)
.

x1 = 0, 75

x2 = 0, 7083333

x3 = 0, 7071078

x4 = 0, 7071068

x5 = 0, 7071068 ≈ 1√
2

(39)

2.3.9 What is Going on?

Now, by each 3 calculation ways the linear and the quadratic equation has been solved.
For the calculation of a square root 3 examples in each 3 divers calculation ways have been
presented.
Many centuries can occur in history of mathematics between a solution and its completion by
a second and third solution way. The here presented order of the calculation methods is not
always strictly historical, but rather didactically optimized, where background knowledge
can be very helpful—like for example at an university.
In the following chapter now not the cubic equations are dealt with, but the arithmetic
sequences, which at the end motivated the difference quotients, the limit of which then was
lead by Newton and Leibniz to the derivative. Newton argued for a long time with Leibniz
about the question, who of both had founded the differential and integral calculus. The
possibility, that both parallely and independent of each other reached the same results and
completed them wonderfully by this, was not considered in that time. Research leads to
knowledge, this is the meaning of it.
This situation is similar, as if two first climbers meet at the summit. In this case, both greet
each other even before the walk to the summit and ask the other one about the difficulty
of his trip. Then it makes sense, if the one, whose route has been easier, enters the summit
first and by this is the first climber . After this, both go down the easier trip, by which the
other has managed a first cross. The probability, that 3 first climbers meet at the same
time at a summit, is very low. Also then, a quarrel can be avoided, if the more wise ones
do without.
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3 Difference Quotient and Arithmetic

3.1 Difference Quotients
3.1.1 Geometric Sequence

Already the ancient Greeks knew the geometric sequence. It is the following sum:

n∑
µ= 0

xµ = 1 + x+ x2 + x3 + . . .+ xn = ? (40)

The solution of this task succeeds at the end, where the following proof via a telescope sum29

is very impressive:(
xn + . . .+ x3 + x2 + x+ 1

)
(x− 1) = xn+1 + (xn − xn) + . . .+ (x− x)− 1 , ⇔
n∑

µ= 0

xµ =
xn+1 − 1

x− 1
. (41)

The result (41) belongs already to the theorems30, which are not at once plausible without
the knowledge of a solution way. Well–known is the discussion of the ancient Greeks, whether
for n → ∞ a limit exists, that is less than infinity. For the case no and x < 1 the ancient
Greeks constructed a task, due to which a rapid runner would not pass a slow turtle, if he
would reach the starting point of the turtle later on.

3.1.2 Generalized Geometric Sequence

The result (41) can be generalized, and then it represents the following telescope sum:

an+1 − bn+1 = a
n∑

µ= 0

aµ bn−µ − b
n∑

µ= 0

aµ bn−µ , ⇔

n∑
µ= 0

aµ bn−µ =
n∑

µ= 0

an−µ bµ =
an+1 − bn+1

a− b
=

bn+1 − an+1

b− a
. (42)

Therefore, the terms a and b can be swapped in the generalized geometric sequence (42).
For a = b results the limit of a difference quotient , for example here of the power function
an+1 für b → a, which therefore is the first derivative of the power function an+1 to the
base a.
The swapping of a and b may be valid to be a second solution way, like at the proof, that
1 + 1 = 2 is valid, also the summands 1 can be swapped without a change of the result.
The swapability of the arguments is a special property of sum and product, which can be
discovered by the search for further solution ways.

29In the midth occur equal pairs with sum zero, thus the sum is pushed together, except for the first and the
last term.

30mathematical proposition

17



3.1.3 A 3rd Solution Way

In theorem (42) occurs an integer number n, thus as third proof presents itself the so–called
complete induction:

• First a starting value n1 is to be found. Here presents itself, to search for the integer
number n0 = (n1 − 1), for which the equation is not fulfilled, while it is fulfilled for
n1. This n1 is the induction begin.

• For the conclusion from n to (n + 1) is tried to scribe the terms of the equation for
(n+ 1) to terms, which contain one hand side of the equation for n.

• In the so–called induction step the term is inserted from the equation to be proven,
which stand on the other hand side of the equation.

• In case of success to show, that this equation is fulfilled, the theorem is valid for integer
n ≥ n1.

• This needed to be shown.

Thus the proof begins by showing, that the empty sum for n0 = −2, a 6= b, and a 6= 0 6= b
fails, while it fulfills the equation (42) for n1 = −1:

−2∑
µ= 0

aµ bn−µ = 0 6= a−2+1 − b−2+1

a− b
=

1
a −

1
b

a− b
=

b−a
a b

a− b
= − 1

a b
. (43)

−1∑
µ= 0

aµ bn−µ = 0 =
a−1+1 − b−1+1

a− b
=

1− 1

a− b
= 0 . (44)

Then, the very induction takes place by the induction step:

n+1∑
µ= 0

aµ bn+1−µ = an+1 + b
n∑

µ= 0

aµ bn−µ = an+1 + b
an+1 − bn+1

a− b
=

=
an+1 (a− b) + b

(
an+1 − bn+1

)
a− b

=
an+2 − bn+2

a− b
. (45)

The right hand side of equation (42) is confirmed for (n+1) by the induction (45). Therefore,
this equation is valid for all integer n ≥ −1 und a 6= b.
This needed to be shown.

3.1.4 Crossing to the Geometric Sequence

From the generalized geometric sequence (42) follows the geometric sequence (41), not only
for b = 1, but also via division by an, or bn. If a and b are integers, then a quotient
q = a

b 6= 1 or q = b
a 6= 1 is built, because for a 6= b is valid:∑n

µ= 0 a
µ bn−µ

bn
=

n∑
µ= 0

qµ =
a
(
a
b

)n − b
a − b

=
qn+1 − 1

q − 1
=

1− qn+1

1− q
. (46)

The latest Leonhard Euler has introduced geometric sequences with the quotient q and has
even carried out the difference quotients of arbitrary functions analogously. Therefore, this
field is known until totay as the so–called q–analysis.
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3.2 Arithmetic
3.2.1 Power Function

All authors of mathematical textbooks agree, that the oldest and easiest difference quotients
are the same of the power function xn for integer n ≥ 0 of n factors x. Here results, that
for n = 0 the difference quotients are always zero, because x0 = x(1−1) = x

x = 1 is valid, to
be precise, for all x.
For n = 1 follow all real integer numbers as arithmetical sequence of 1st degree, where their
difference quotient is always unity.

3.2.2 Square Numbers

For n = 1 occur properties of the square numbers, which are to be considerable:
0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
2 2 2 2 2 2 2 2 2 2 2 2 2 2

Here, ∆x = 1 was chosen. However, this is not yet all, what is possible.
So, for ∆x = 2 result the following, arithmetical difference quotients:

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
2 4 6 8 10 12 14 16 18 20 22 24 26 28

2 2 2 2 2 2 2 2 2 2 2 2
For ∆x = 3 follow already known, arithmetical difference quotients:

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
3 5 7 9 11 13 15 17 19 21 23 25 27

2 2 2 2 2 2 2 2 2 2
For ∆x = 4 result the following, arithmetical difference quotients:

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
4 6 8 10 12 14 16 18 20 22 24 26

2 2 2 2 2 2 2 2
Here, the difference quotiens of 1st degree complete to the set of the integer numbers. With
it, the difference quotients of 1st degree lead for odd ∆x to the odd numbers, for even ∆x
to the even numbers. Since in arithmetic only differences and not difference quotients are
considered, for the differences with even ∆x result gaps.
The difference quotients of the even square numbers lead for integer ∆x to all integer
numbers. The arithmetical sequences of the integer square numbers lead for integer ∆x to
gaps, because in this case for ∆x = 2 occur differences only, that can be divided by 22 = 4.
In history of mathematics, it took a long time, until the arithmetic was replaced by the
difference quotients. A reason for this hesitation may be, that since the Pythagoras’ theorem
the search for integer examples could be systematized by arithmetic, while the difference
quotients help rather less for this. So, the following examples are found for the Pythagoras’
theorem:

∆x = 1: 52 − 42 = 32 132 − 122 = 52 252 − 242 = 72 412 − 402 = 92

∆x = 2: 52 − 32 = 42 102 − 82 = 62 172 − 152 = 82 262 − 242 = 102

Here, important is just the insight, that ∆x = 1 does not yield all integer examples for the
Pythagoras’ theorem. For the construction of a rectangular triangle, the edge ratios 3:4:5
are already handed down by the ancient Egypts.
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3.2.3 Cubic Numbers

For the square numbers has resulted a systematics for the difference quotients:

(x+ ∆x)2 − x2

∆x
= 2x + ∆x . (47)

This has lead to the result, that for odd ∆x the difference quotient of square numbers reaches
all odd numbers and for even ∆x all even numbers. Nevertheless, here for the differences of
two, even square numbers occur also impossibilities, for example to reach the result 2 or 6.
For the cubic numbers there are already more complicated situations, thus it is much more
hard to reach a wanted number:

(x+ ∆x)3 − x3

∆x
= 3x2 + 3x∆x+ ∆x2 . (48)

For this a systematics is not yet finished, for example to get a positive integer cubic number
by the difference of two, positive integer cubic numbers. Time and again, Pierre de Fermat
claimed to be able to proof this connection for integer n > 2, but his historical proof cannot
be found anywhere. Paul Wolfskehl31 was anyhow hindered by this problem to commit
suicide. As thank for this nature of the task he founded in 1908 a huge amount of money for
the same, who would have proven this theorem until 2007. In 1993, Andrew Wales brought
forth a proof of about 200 pages length, which after at least one correction is regarded to
be consistent, and received the prize money.
The difference between geometric sequence and binomial theorem indeed becomes clear since
the cubic numbers. It may be, that Fermat , who together with Blaise Pascal formulated
the binomial theorem in its final version, aimed to this. Therefore the difference of two cubic
numbers due to equation (42) yields:

a3 − b3

a− b
= a2 + a b+ b2 6= a2 + 2 a b+ b2 = (a+ b)2 . (49)

The result (49) suggests the supposition, that the difference of two, neighbored, integer
cubic numbers could not be an integer square number. However, exactly to this there is at
least one example to the contrary32:

83 − 73

8− 7
= 82 + 8 · 7 + 72 = 169 = 132 = (7 + 6)2 = 72 + 2 · 7 · 6 + 62 . (50)

Therefore, the failure of a wanted calculation way does not proof at all the general non–
solvability, although the correctness of the inequality (49) is valid for a 6= 0 and b 6= 0. If
such a square number would be also a cubic number, what is the case for all 6th powers of a
number, then the claim of Fermat and the proof of Andrew Wiles would be shaken by this.
Kurt Gödel categorized Fermat’s problem in 1931 to be undecidable33, he leaved it open,
who was right. Unfortunately, he and others thought, he had proven the undecidability,
thus just a new concept for proven unsolvability of a problem was introduced. However,
undecidability can never be proven, but expresses, that currently no solution is available.

31[1953VEB], entry Fermat, page 293
32[1992PRS], page 21
33[1931Göd]
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3.2.4 Undecidability

The big problems of life are all not solved during a single day. Among them are principle
questions of the following kind:

• Is there a God?

• How old is the earth?

• Has someone fallen in love to me?

• Is the food, that I eat, with poison?

Usually, these questions are considered to be currently undecidable and sometimes left for
later researchers, who will eventually yield the goal:

• The last mentioned question was the daily problem of Kurt Gödel, who by this found
each day an undecidability. As long as his dear wife was living, she always knew an
argumentation, which moved him to eat the meal, that she had cooked for him. Then,
when she died, Kurt Gödel died of starvation because of the undecidability, being
unsolvable to him. This shows, that for him his research results were real. Therefore,
medical doctors time and again call mathematicians to be ill with obsessive–compulsive
disorder (OCD).

• In connection to falling in love often enough the reason is missing. Therefore, at least
in Germany there is an old tradition to find out the very state of the things by pulling
a flower to pieces. With this is alternately said at each petal:

– "You love me."
– "You do not love me."

By this at the end there will indeed be a result, but whether it describes a reality, re-
mains open. Three–leaved clover or four–leaved cruciferous plants are usually excluded
from this questioning. Patience and prudence help much better in such questions. Also
the advice of parents and friends will protect here from bad luck.

• The question, how old the earch is, has already occupied many humans, which all
are younger than the same. Merely in the Bible of the people Israel there are at
least 3 variants of written records for Genesis 5, from which only the text version
of the Samaritans, being yet despised by the Jews, confirms the number value of
the Israelian calendar , which is used until today. The theologian Adolf Schlatter in
Tübingen (Germany) considered this question from his sight to be unsolvable, but
he permitted, that later on someone else would solve this problem, for example a
mathematician. Therefore, he let the 3 divers number columns in German language
to be printed in the Calw’s Bible Encyclopaedia34 to bring to an end the hurdle of a
Hebrew and Greek study for solving the problem. This was his contribution to the
solution of this task. The author needed in spite of this help in total 40 years to clarify
the concerning problem finally and offers the result to all interested ones35. In each
science, correct results are offered only, and they are not forced upon anyone.

• The question, whether there is a God, has already been asked so much, that in Germany
the legislator meanwhile tends towards ideological and religious tolerance: Anyone is

34[1924ZH], entry Seth, page 699
35for example: [2018SW]
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allowed to find his own answer to this question. In Germany, the trial to force others
to join, converse to, or leave a denomination, is considered to be a violation against
the religious freedom36, which is established as an immediately valid, fundamental
right. Only for children, the legal guardians are permitted to prescribe the belonging
to a denomination or to participate in religious instruction. Due to article 136 of
the Weimar’s constitution37, no civil rights or duties result automatically by religious
freedom. Thus, due to the word of Frederick the Great , in Germany "anyone shall
become blessed according to his version."
Concerning the problem, whether there is a God, these legal frame conditions con-
tribute so much only, that about this no quarrel is allowed. Contentionally, this ques-
tion can be compared with the question about the existence of the electrical current:
It is existent also in case of no counting on it.
Whosoever wants to meet the living God, the same should fit in with his frame con-
ditions. Already in the Holy Bible of the people Israel, which reports the clearest on
such meetings, the following statements38 are found:

– But without faith it is impossible to please him: for he that comes to God must
believe that he is, and that he is a rewarder of them that diligently seek him.
(Hebrews 11:6)

– Because that which may be known of God is manifest to them; for God hath shown
it unto them.
For the invisible things of him from the creation of the world are clearly seen, being
understood by the things that are made, even his eternal power and Godhead; so
that they are without excuse. (Romans 1:19–20)

– And that we may be delivered from unreasonable and wicked men: for all men
have not faith. (2nd Thessalonians 3:2)

Therefore it is beneath the dignity of Israel’s God, to discuss with humans about his
existence. In the tradition of the Roman Catholic church, the cited text from the
Roman’s epistle was often quoted, but explained seldom with the help of examples,
thus not yet nearly anyboby will find by the creation to the creator, too. Also in the
Swabian pietism of the evangelical tradition, there is often use to get out of the way
of these questions by pious excuse, instead of consenting to take part in the problem,
and to answer at least partially.
On the other hand side, there are also deceitful mockers, which even in denominations
speak only to cause confusion. So, the French mathematician and philosopher Pierre
Simon de Laplace became well known for the following answer to Napoleon: "Majesty,
the hypothsis ’God’ I do not need." This comment shows, that he indeed had read
many philosophers, but instead of a present undecidability he tended to mocking. To
the wisdom of Israel’s God belongs, that also his existence he does not force to any
human. Therefore, the Holy Bible totally refrains philosophical proofs of the existence
of God.

36[2001GG], article 4, page 14–15
37[2001GG], article 140, page 85 and 89
38each cited from [1994AV] with adapted spelling
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3.2.5 The End of the Fundamental Crisis

Albert Einstein and Kurt Gödel became friends, after his undecidability theorem had be-
come public knowledge. Both were searching for ways out of the scholastic dogmatizing
of Aristoteles, which is tradition since the Middle Ages. Due to Aristoteles, to a question
there would only be the answers39 "right" or "wrong" . But, that even the important prob-
lems of life lead first into an undecidability, was insensitively ignored by the cite: "tertium
non datur."40 Gödel however found examples for undecidability , among which he restricts
himself in his elaboration41 to mathematical problems:

• The supposition of Fermat .

• The set theory, which also can yield partial congruence, where the opposite of which
is another partial congruence.

• The analytical solvability of the algebraic equations of 5th and higher degree.

That privately he was occupied each day by the undecidability , whether his meal would
be poisoned, may have been a later occuring problem. Indeed, Gödel was very logical and
powerless in view of undecidability.
The scholastics also yet today ignore the solution suggestions by Gödel and others and
claim, that by his work a fundamental crisis has befallen mathematics. This crisis exists
only for philosophers, which want to proof imperatively, instead of searching for coincidence
of several solution ways. Whosoever wants to replace the word "partial congruence" by a
good, English word, the same shall use the word "possible" . The opposite of this "possible"
now is another "possible" and by no means "impossible". This means, that by this expansion
of the Boolean algebra an alternative thinking can begin in mathematics, which in the long
term will save from obsessive–compulsive disorder . Since Aristoteles was a human, also he
is allowed to once have been mistaken: tertium datur42.
By Gödel’s undecidability the notion unsolvability is banished from mathematics: On un-
solvability can decide only he, who knows and has tried all available solution possibilities.
Even his failing does not proof, that other researchers will also fail with this problem. This
is like a first climb of a summit: As long as nobody was upon, there are indeed research
approaches, but not yet successful ones. The existence of the summit is not shaken by this,
even if it just stands in the clouds.
Therefore, whosoever wants to be saved from the scholastic dogmatizing of Aristoteles since
the Middle Ages, the same shall search further alternatives for each solution way. This
possibility of self–check saves each researcher very effectively from all kinds of fallacies,
but it is significantly more laborious, than the repeated parrot–fashion of theorems, being
learned by heart, plus their supposedly only possible derivation.
Concerning these thoughts, now the author does not present each 3 derivations, but rather
wants to prompt to independent thinking, searching and working:

No mountain guide carries his guests onto the summit,
but everybody is allowed to climb and clamber one’self.

39also known as Boolean algebra
40Latin for: "A third one has not been given."
41[1931Göd]
42Latin for: "A third one has been given."
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3.2.6 Chinese Arithmetic

The binomial theorem detects the coefficients, which result by expanding multiplication of
the nth power of a sum (a+ b):

(a+ b)n =
n∑

µ= 0

(
n

µ

)
aµ bn−µ . (51)

The binomial coefficients
(n
µ

)
, occuring there, are already found on old, Chinese wood-

cuttings43. Their number values result from a task requiring great diligence by repeated,
expanding multiplication, where also their formation law(

n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
(52)

can be found44:
n k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

The puzzling by Blaise Pascal at the end has lead to the following formula to calculate the
binomial coefficients directly45:(

n

k

)
=

n!

k! (n− k)!
, n! =

n∏
µ= 1

µ = 1 · 2 · 3 · · · n , 0! = 1 . (53)

There are again several calculation ways to find such a solution. The most known is done by
introduction of a function factorial n!, which fulfills the following difference equation and
reduces the difference equation (52) to the following problem:

(n+ 1)! = (n+ 1)n! , 1! := 1 (54)

By help of this difference equation (54), the value for 0! can be set at once. Meanwhile
the factorial function is tought in the middle level of grammar schools and nevertheless is
already the entrance to higher mathematics.
Now, if the Chinese or also Pascal’s triangle is layed to the left hand side onto all unities,
then results the insight, that especially simple, arithmetical sequences lay one above the
other, thus canonical polynomials of kth degree have been found, for example:(

x

0

)
= 1 ,

(
x

1

)
= x ,

(
x

2

)
=

(x− 1)x

2
,

(
x

3

)
=

(x− 2) (x− 1)x

6
. (55)

43[1995Oli], figure 42, page 103
44[1987BSGZZ], section 2.2.1.2., page 104
45[1987BSGZZ], section 2.2.1.2., equation (2.1), page 104
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3.2.7 Newton’s Arithmetic

The lastest Isaac Newton changed the difference sequences of arithmetic by arithmetical
difference quotients. The reason for this comes out of physics:

• For mesured data sequences, the measuring interval plays an important role, which
not at all is unity only.

• Material properties of steels are often reported in a distance of 100 K.

• The mathematical interpolation of a measured sequence must be independent of the
used measuring scale.

• Tidily recorded data sequences have got a throughout constant measuring interval.

So, Isaac Newton did not philosophize the whole life on square and cubic numbers, but gen-
erated mathematical tools to cope with the usual research day. His interpolation formula46

is valid only for (n + 1) equidistant data steps and reproduces each even great measuring
sequence into a polynomial , which can be calculated very quickly:

f(x) =
n∑
µ=0

(
x

∆x

µ

)
∆µf(x)|x→x0

=
n∑
µ=0

(
x

∆x

µ

)
∆xµ

(
∆µf(x)

∆xµ

∣∣∣∣
x→x0

)
, (56)

f(x) =
n∑
µ=0

(
x
∇x
µ

)
(−1)µ ∇µf(x)|x→x0

=
n∑
µ=0

(
x
∇x
µ

)
(−∇)µ

(
∇µf(x)

∇xµ

∣∣∣∣
x→x0

)
. (57)

Here, ∆ means a difference like in the numerator of the difference quotient (22), and ∇
a difference like in the numerator of the difference quotient (23). From both Newton’s
formulae (56) and (57) also a third calculation way analogously to (24) can be constructed,
yet. In connection to this interpolation, time and again a rest term is discussed, because
not always was understood, that this interpolation deals with finitely sized, measured data.
Of course, by this can also be found very useful things concerning polynomial differences or
polynomial sums:

• The numerical derivative by the derivative of Newton’s interpolation has got very lower
sized noise, than by other algorithms.

• The numerical integration of measured data can be done directly by use of Newton’s
interpolation—also for discrete sums.

• The coefficients of the difference sums ∆µ or ∇µ are always characteristic of power
terms and therefore also of polynomials.

For the difference sums ∆µ of x2 result only 2 coefficients and by this all sums47 and
differences of x2:

x2 = 0

(
x

0

)
+ 1

(
x

1

)
+ 2

(
x

2

)
= x + 2

x (x− 1)

2
= x2 , (58)

x∑
ν= 0

ν2 =

(
x+ 1

2

)
+ 2

(
x+ 1

3

)
=

x2 + x

2
+
x3 − x

3
=

x (x+ 1) (2x+ 1)

6
. (59)

The number of coefficients or difference sums ∆µ in equation (56) is reduced to a minimum,
if the same are taken at the beginning by zero.

46[1987BSGZZ], section 7.1.2.6.2., table 7.9, page 758
47see [1987BSGZZ], section 2.3.3., equation (5), page 114
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3.2.8 Heuristics of Variants

When listing and systematizing the coefficients or difference sums ∆k xp result several pos-
sibilities, which are worth to be mentioned particularly:

Exponent k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
p = 0 1 0 0 0 0 0 0 0
p = 1 0 1 0 0 0 0 0 0
p = 2 0 1 2 0 0 0 0 0
p = 3 0 1 6 6 0 0 0 0
p = 4 0 1 14 36 24 0 0 0
p = 5 0 1 30 150 240 120 0 0
p = 6 0 1 62 540 1560 1800 720 0
p = 7 0 1 126 1806 8400 16800 15120 5040

As building law for the coefficients K1(p, k) results with the exponent p:

K1(p+ 1, k + 1) = (k + 1) (K1(p, k) +K1(p, k + 1)) . (60)

Now, the difference sums can also be listed, beginning at unity48 and lead by this to a shift
of the index µ in equation (56), to yield again by use of Newton’s interpolation correct
results:

Exponent k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
p = 0 1 0 0 0 0 0 0 0
p = 1 1 1 0 0 0 0 0 0
p = 2 1 3 2 0 0 0 0 0
p = 3 1 7 12 6 0 0 0 0
p = 4 1 15 50 60 24 0 0 0
p = 5 1 31 180 390 360 120 0 0
p = 6 1 63 602 2100 3360 2520 720 0
p = 7 1 127 1932 10206 25200 31920 20160 5040

As building law for the coefficients K2(p, k) results49 with the exponent p:

K2(p+ 1, k + 1) = (k + 1)K2(p, k) + (k + 2)K2(p, k + 1) . (61)

A further variant is found in literature by the entry Stirling’s numbers of 2nd kind50, which
cannot be presented here because of publisher’s rights, and also concerning content causes
more confusion than use, because it enables hardly no simple heuristics for arbitrary sums
and differences, like at Newton. As building law for the coefficients KS,2(p, k) results51, if
again now is chosen k ≥ 0, instead of else usually k ≥ 1:

KS,2(p+ 1, k + 1) = KS,2(p, k) + (k + 2)KS,2(p, k + 1) . (62)

Therefore, this difference equation results, if the binomial coefficients (55) are replaced
by so–called factorial polynomials, which miss the division by the belonging factorial k!. In
return for this, the difference sumsK2(p, k) = k!KS,2(p, k) are divided in the here presented
scaling of k by k!. Of course, polynomials can be scaled and represented arbitrarily. The
mentioned diversity gives an orientation, what is to be taken into account for own calculation
programs: There are several calculation ways to the goal.

48[1992PRS], page 12
49[1992PRS], equation (3), page 9
50[1982ST], appendix B, page 233
51[1982ST], equations (22), (27), (31) and (32), page 6–7
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4 Unity Roots and Complex Numbers

4.1 Unity Roots due to Gauß
In connection to his doctoral thesis, Carl Friedrich Gauß solved among others the problem,
which roots q has got the polynomial qn − 1. For this, he knew because of the geometric
sequence (41), that a polynomial division by (q − 1) works always out, as long as n is an
integer number. Therefore, in this manner the equation q3 − 1 = 0 can be yet solved by
the already presented methods, because the quadratic equation has already been solved in
general:

q3 − 1 = (q − 1)
(
q2 + q + 1

)
= (q − 1)

(
q +

1

2
+

√
−3

2

) (
q +

1

2
−
√
−3

2

)

q1 = 1 , q2 = −1

2
+

√
−3

2
, q3 = −1

2
−
√
−3

2
. (63)

All three solutions (63) fulfill the checking calculation in the equation q3 = 1, what results
by inserting and expanding multiplication.

4.2 Gaussian Number Plane
If
√
−1 represents an own number dimension, then the 3 solutions (63) build an equilateral

triangle, one corner of which is placed at the coordinate {1; 0}, and its other corners at the
coordinates {−1

2 ;±
√

3
2 }. Thus, the complex numbers are interpreted geometric and stretch

out the Gaussian number plane, while all real numbers are hold by a one–dimensional
number beam. Now, the absolute value of the solutions (63) results due to Pythagoras as
line between the discussed point and the coordinate origin:√

12 + 02 = 1√√√√(−1

2

)2

+

(
±
√

3

2

)2

=

√
1

4
+

3

4
=
√

1 = 1 .

As a consequence, all roots of unity are on the unity circle in the complex number plane.
Their absolute value is each unity, they distinguish only by their phase angle, which is
measured counter–clockwisely from the positive real axis, and by this shall own the rotation
orientation mathematical positive. By Gauß, only phase angles as radial arc are allowed in
the range [0; 2π), by which also the polar coordinates absolute value and phase angle are
always unambiguous. This setting seems to be arbitrary, but it has been calibrated sensibly
by Gauß, so that algebra can be dealed with clearly and in general best possibly.
The physicist and mathematician Stephen Wolfram deviates at his mathematics platform
Mathematica from the settings due to Gauß, by calculating the phase angle of a com-
plex number also indeed as radial arc, however now in the interval range (−π;π]. As a
consequence, the formulae for complex numbers can turn out to be hardly understood at
Mathematica, furthermore the applicants must think and calculate in diverse variants, by
which creep in many mistakes, if not the principle of three calculation ways is applied. This
means:

Mathematica does not calculate wrong in general,
but time and again differently than in literature.
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However, Mathematica allows the own easy programming of traditional complex numbers.
This is the real strength of this mathematics platform.

4.3 The Root Theorem
4.3.1 The Formula

The following theorem is fundamental to be able to calculate with complex numbers:
n
√
a b = n

√
a

n
√
b . (64)

4.3.2 1st Proof

As proof, for integer n > 0 the nth power is built as inverse function of the nth root with
( n
√
c)
n

= c:

(
n
√
a b
)n

=
(
n
√
a

n
√
b
)n

=
n∏
µ=1

(
n
√
a

n
√
b
)

=

 n∏
µ= 1

n
√
a

  n∏
µ= 1

n
√
b

 , ⇔

a b =
(
n
√
a
)n ( n
√
b
)n

= a b .

By this, the nth power is proven as inverse function for both sides of equation (64).

4.3.3 2nd Proof

With a = cn and b = dn follows for integer n > 0:

n
√
a b =

n
√
cn dn = n

√
(c d)n = c d = n

√
a

n
√
b .

By this, the root theorem (64) is proven by suitable substitution52.

4.3.4 3rd Proof

With a−n = 1
an follows for the reciprocal of equation (64) and integer n > 0:(

1
n
√
a b

)n
=

1n(
n
√
a b
)n =

1

a b
=

1

( n
√
a)
n
(
n
√
b
)n =

(
1

n
√
a n
√
b

)n
⇔

1
n
√
a b

=
1

n
√
a n
√
b

⇔

n
√
a b = n

√
a

n
√
b .

This needed to be shown.

4.3.5 Outlook

In the frame of further proofs will follow later on the generalization of the root theorem
(64) to all complex numbered n. This generalization is the easiest in the phase notation
due to Gauß and especially with Mathematica needs finishing off. Each interested one may
consider one’self, which programming platform would seem to be best suitable for him.

52replacement
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4.4 Exponential Function
The following limit leads by the substitution n = mx to the exponential function:

ex =

(
lim

m→∞

(
1 +

1

m

)m)x
= lim

m→∞

(
1 +

1

m

)mx

= lim
n→∞

(
1 +

x

n

)n
=

= lim
n→∞

n∑
µ= 0

(
n

µ

) (
x

n

)µ
= lim

n→∞

n∑
µ= 0

xµ

µ!

n!

(n− µ)!nµ
=

= lim
n→∞

n∑
µ= 0

xµ

µ!

µ∏
k= 1

(
n− µ+ k

n

)
=

∞∑
µ= 0

xµ

µ!

µ∏
k= 1

1 =
∞∑
µ= 0

xµ

µ!
. (65)

The found series (65) determines Euler’s number e for x = 1. An especially fast programming
results for x ≥ 0 by placing the same terms outside the brackets:

ex = 1 +
x

1

(
1 +

x

2

(
1 +

x

3

(
1 +

x

4
(. . .)

)))
.

Mainly this means, that the sum term of the series is permanently changed by a product,
by what a uniform calculation time is to be expected per loop. The derivative yields:

dex

dx
= lim

∆x→ 0

ex+∆x − ex

∆x
= ex lim

∆x→ 0

e∆x − 1

∆x
= ex lim

∆x→ 0
lim
n→∞

(
1 + ∆x

n

)n
− 1

∆x
=

= ex lim
∆x→ 0

lim
n→∞

n∑
µ= 1

(
n

µ

)
∆xµ−1

nµ
= ex

1 + lim
n→∞

n∑
µ= 2

(
n

µ

)
0

nµ

 = ex . (66)

An alternative calculation way is the derivative of the exponential series, for what the
derivative of an integer power xn is needed with µ > 0:

lim
∆x→ 0

(x+ ∆x)n − xn

∆x
= lim

∆x→ 0

n∑
µ= 1

(
n

µ

)
∆xµ−1 xn−µ =

= nxn−1 +
n∑

µ= 2

(
n

µ

)
0xn−µ = nxn−1 . (67)

Also for this result (67), by (23) or (24) there are alternative calculation ways to (22). A
further variant results via the generalized geometric sequence (42):

lim
∆x→ 0

(x+ ∆x)n − xn

∆x
= lim

∆x→ 0

n−1∑
µ= 0

(x+ ∆x)µ xn−1−µ =
n−1∑
µ= 0

xn−1 = nxn−1 . (68)

Now, by this follows the derivative of the exponential series:

dex

dx
=

∞∑
µ= 0

d

dx

(
xµ

µ!

)
=

∞∑
µ= 0

µxµ−1

µ!
=

∞∑
µ= 1

xµ−1

(µ− 1)!
=

∞∑
ν= 0

xν

ν!
= ex . (69)

A third solution way for the derivative of the exponential function results via the derivative
of the inverse function, namely the natural logarithm ln(x).
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4.5 Natural Logarithm
The natural logarithm is the inverse function of the exponential function (65):

ln (ex) := x , eln(x) := x . (70)

There are again several possibilities to calculate, of which Newton’s iteration (32) is very
quickly:

x = ln(y) , y = ex ,

x = lim
n→∞

xn+1 = lim
n→∞

xn −
exn − y

exn
= lim

n→∞
xn − 1 +

y

exn
. (71)

During the search for alternative calculation ways, also here the reciprocal helps to go on:

x = ln(y) ,
1

y
= e−x ,

x = lim
n→∞

xn+1 = lim
n→∞

xn +
e−x − 1

y

e−x
= lim

n→∞
xn + 1− ex

y
. (72)

As example presents itself the natural logarithm of unity, beginning at x0 = 1:
x1 = 1− 1 + 1

e1 = 0, 3678794 x1 = 1 + 1− e1

1 = −0, 7182818
x2 = 0, 0600801 x2 = −0, 2058711
x3 = 0, 0017692 x3 = −0, 0198091
x4 = 0, 0000016 x4 = −0, 0001949
x5 = 0, 0000000 x5 = −0, 0000000

x = 0− 1 + 1
e0 = 0 , x = 0 + 1− e0

1 = 0 .
The following example finds the natural logarithm of 2, each beginning at x0 = 0:

x1 = 0− 1 + 2
e0 = 1, 0000000 x1 = 0 + 1− e0

2 = 0, 5000000
x2 = 0, 7357589 x2 = 0, 6756394
x3 = 0, 6940423 x3 = 0, 6929948
x4 = 0, 6931476 x4 = 0, 6931472
x5 = 0, 6931472 x5 = 0, 6931472
x6 = 0, 6931472

Because of (70), for the logarithm logb(y) to base b is valid:

bx = ex ln(b) logb (bx) := x logb(y) =
ln(y)

ln(b)
. (73)

Because of (73), all logarithms are proportional to each other. The derivative of the loga-
rithm yields with ln(a) + ln(b) = ln(ab):

d ln(x)

dx
= lim

∆x→0

ln(x+ ∆x)− ln(x)

∆x
= lim

∆x→0

ln
(
x+∆x
x

)
∆x

=

= lim
∆x→0

ln

((
1 +

∆x

x

) 1
∆x

)
= lim

n→∞
ln

((
1 +

1

n

)n
x

)
ln
(
e

1
x

)
=

1

x
. (74)

If x = ey is set, then the result (74) follows also by the derivative of the inverse function—a
connection, which is only valid for the first derivatives and has lead to the notation due to
Leibniz with differential fractions:

d ln(x)

dx
=

dy

dey
=

1
dey

dy

=
1

ey
=

1

x
. (75)
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4.6 Complex Numbers
Complex numbers have got two real numbers, which can be drawn in two dimensions. As
coordinate system present themselves the Cartesian and the polar coordinates. They are
not completely equivalent, because with distance or absolute value zero an arbitrary phase
angle is yet possible, which however cannot be set in Cartesian coordinates for the absolute
value zero.
Therefore, for computer algebra mainly are suitable complex numbers in polar coordinates,
thus the absolute value |z| and phase arg(z) as angle with radial arc are set, for which the
trigonometric functions from geometry play a role:

z = <(z) + i=(z) , (76)
z = <(z)− i=(z) , (77)

<(z) =
z + z

2
= |z| cos(arg(z)) = |z| cos(arg(z)) , (78)

=(z) =
z − z

2 i
= |z| sin(arg(z)) = −|z| sin(arg(z)) , (79)

|z| =
√
z z =

√
<(z)2 + =(z)2 =

√
|z|2 (cos(arg(z))2 + sin(arg(z))2) = |z| , (80)

arg(z) = arctan

(=(z)

<(z)

)
= arctan

(
z − z
z + z

)
= arctan

( |z| sin(arg(z))

|z| cos(arg(z))

)
= arg(z) ,(81)

arg(z) = arctan

(=(z)

<(z)

)
= arctan

(
z − z
z + z

)
= arctan

(
sin(arg(z))

cos(arg(z))

)
) = − arg(z) , (82)

z = |z| (cos(arg(z)) + i sin(arg(z))) = |z| (cos(arg(z))− i sin(arg(z))) . (83)

In the definitions (78) until (81), the number pairs <(z) and =(z) of the Cartesian coor-
dinates are calculated into the number pairs |z| and arg(z) of the polar coordinates, if the
trigonometric functions are known from geometry.
Now, since Pythagoras is known, that in the unity circle is valid for the rectangular triangle:

sin(x)2 + cos(x)2 = 1 . (84)

This insight (84) in equation (83) leads to cos(arg(z)):

z

|z|
=

<(z) + i=(z)√
<(z)2 + =(z)2

= cos(arg(z)) + i
√

1− cos(arg(z))2 ⇔

z

|z|
− cos(arg(z)) =

√
cos(arg(z))2 − 1 ⇔(

z

|z|

)2

− 2
z

|z|
cos(arg(z)) + cos(arg(z))2 = cos(arg(z))2 − 1 ⇔

cos(arg(z)) =

z
|z| + |z|

z

2
. (85)

Therefore, cos(arg(z)) is the arithmetic mean of a number z
|z| and its reciprocal. By use of

the exponential function (65), this can be written the following:

cos(arg(z)) =
e

i ln
(
z
|z|

)
i + e−

i ln
(
z
|z|

)
i

2
=

ei arg(z) + e−i arg(z)

2
. (86)
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Analogously follows sin(arg(z)) with i =
√
−1:

z

|z|
=

√
1− sin(arg(z))2 + i sin(arg(z)) ⇔

z

|z|
− i sin(arg(z)) =

√
1− sin(arg(z))2 ⇔(

z

|z|

)2

− 2 i
z

|z|
sin(arg(z))− sin(arg(z))2 = 1− sin(arg(z))2 ⇔

sin(arg(z)) =

z
|z| −

|z|
z

2 i
=

ei arg(z) − e−i arg(z)

2 i
. (87)

The results (85) and (87) confirm Pythagoras (84) and the product structure (83). Concern-
ing these results is new, that the logarithm of a number z

|z| of absolute value unity yields an
angle and therefore reproduces the arc tangent function:

arg(z) =
ln
(
z
|z|

)
i

= arctan

(
z − z
z + z

)
. (88)

With this turns out, that the logarithm is the very angular function, because by it each
angle from 0 until 2π is covered, while the usual arc tangent is only in the range from −π

2
until π2 . Of course, this connection is not the case in general, but here it works only, because
the angle is given in the correct scaling, namely in the radial arc without dimension. This
is often clarified at the following limit, which works only in the radial arc and then gives
unity in geometry:

lim
x→0

sin(x)

x
= lim

x→0

eix − e−ix

2 ix
= lim

x→0

(
1 + ix+ x2(. . .)

)
−
(
1− ix+ x2(. . .)

)
2 ix

=

= lim
x→0

2 ix+ x2(. . .)

2 ix
= 1 . (89)

Not at all, this is the only possibility to demonstrate the radial arc as the right angle scaling .
Rather, the following calculation possibility of number π results:

cos(π) = −1 =
eiπ + e−iπ

2
⇔

e2 iπ + 2 eiπ + 1 =
(
eiπ + 1

)2
= 0 ⇔

eiπ = −1 = e−iπ ⇔

π =
ln(−1)

i
. (90)

The result (90) cannot be found via Newton’s iteration (32). In general, Newton’s iteration
fails always, if f ′(xn) is near zero or exact zero. Therefore, alternatives to Newton’s iteration
(32) are needed. What works very well contrary to this, is the result π = 4 arctan(1), which
can also be found on many pocket calculators, programming languages and so on, for what
the following derivative is needed:

d sin(x)

dx
=

d
(
eix − e−ix

)
2 i dx

=
eix + e−ix

2
= cos(x) . (91)

This result (91) can also be found in geometry, with more calculation effort via the limit
(89). Analogously follows: d cos(x)

dx = − sin(x).
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4.7 Newton’s Iterations
4.7.1 Taylor’s Series

The series of the exponential function (65) has been generalized by Taylor , where he found
the following connection53:

f(a) =
∞∑
µ=0

dµ f(a)
daµ

µ!

∣∣∣∣∣
a→x

(a− x)µ . (92)

Because of µ! in the denominator of (92), this series can be broken off arbitrarily as approx-
imation.

4.7.2 Newton’s Iteration of 1st Degree

Now, if Taylor’s series is broken off after the linear term, then results with the demand
f(a) = 0, because a zero position is searched for:

f(a) = f(x) + f ′(x) (a− x) = 0 ⇔

a− x = − f(x)

f ′(x)
⇔

a = x− f(x)

f ′(x)
. (93)

For a→ x, the Taylor’s series (92) becomes exact with: f(a) = f(x). Now in equation (93)
is set x→ xn and a→ xn+1, by what the formula (32) is motivated. This iteration method
is always unsuitable, if f ′(x) ≈ 0 is valid.

4.7.3 Preparations

For the following example, the quotient rule (94) is needed:

d
(
f(x)
g(x)

)
dx

=
g(x) f ′(x)− f(x) g′(x)

g(x)2
, (94)

which is a consequence of product rule (95):

d (f(x) g(x))

dx
= lim

∆x→0

f(x+ ∆x) g(x+ ∆x)− f(x) g(x)

∆x
=

= lim
∆x→0

(
f(x+ ∆x)− f(x)

∆x
g(x+ ∆x) + f(x)

g(x+ ∆x)− g(x)

∆x

)
=

= f ′(x) g(x) + f(x) g′(x) (95)

and chain rule (96):

df(g(x))

dx
= lim

∆x→0

f(g(x+ ∆x))− f(g(x))

∆x
· g(x+ ∆x)− g(x)

g(x+ ∆x)− g(x)
=

= lim
∆x→0

f(g(x+ ∆x)− g(x) + g(x))− f(g(x))

g(x+ ∆x)− g(x)
· g(x+ ∆x)− g(x)

∆x
=

= lim
∆g→0

f(g + ∆g)− f(g)

∆g
· lim

∆x→0

g(x+ ∆x)− g(x)

∆x
=

df

dg
· dg

dx
. (96)

53[1987BSGZZ], section 3.1.5.3., page 269
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4.7.4 Example π = 4 arctan(1)

Now with this follows the function structure of Newton’s iteration of 1st degree for the
example f(x) = tan

(
x
4

)
− 1:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

tan
(xn

4

)
− 1

1

4 cos(xn4 )
2

= xn − 4 cos

(
xn
4

)2
(

sin
(xn

4

)
cos

(xn
4

) − 1

)
=

= xn − 2 sin

(
xn
2

)
+ 2 cos

(
xn
2

)
+ 2 . (97)

Therefore now the iteration yields, starting at x0 = 0:
x1 = 4, 0000000
x2 = 3, 3491115
x3 = 3, 1527212
x4 = 3, 1416237
x5 = 3, 1415927
x6 = 3, 1415927

4.7.5 Example π = 2 arccos(0)

Since sin
(
π
2

)
= 1 is valid, here the method (32) of 1st degree can be applied. With f(x) =

cos
(
x
2

)
− 0 and f ′(x) = −1

2 sin
(
x
2

)
results:

xn+1 = xn + 2
cos

(xn
2

)
sin
(xn

2

) = xn + 2 cot

(
xn
2

)
. (98)

By this follows the iteration from the starting value x0 = ±1, because the starting value
x0 → 0 leads to a singularity, by which result 2 solutions ±π:

x1 = 4, 6609754 x1 = −4, 6609754
x2 = 2, 7612470 x2 = −2, 7612470
x3 = 3, 1462451 x3 = −3, 1462451
x4 = 3, 1415926 x4 = −3, 1415926
x5 = 3, 1415927 x5 = −3, 1415927
x6 = 3, 1415927 x6 = −3, 1415927

4.7.6 Newton’s Iteration of 2nd Degree

Now, Taylor’s series (92) is broken off not before the quadratic series term, by which results
with f(a) = 0, concerning a new search for zero positions:

f(a) = f(x) + (a− x)f ′(x) + (a− x)2 f
′′(x)

2
= 0 ⇔

f ′′(x)

2
(a− x)2 + (a− x) f ′(x) + f(x) = 0 ⇔

a− x = − f
′(x)

f ′′(x)
±

√(
f ′(x)

f ′′(x)

)2

− 2
f(x)

f ′′(x)
⇒

xn+1 = xn −
f ′(xn)∓

√
f ′(xn)2 − 2 f(xn) f ′′(xn)

f ′′(xn)
. (99)

The square root can be calculated via (32). Also here, the zero position a = x is determined
exactly with f(a) = f(x) = 0. These both methods (99) fail for f ′′(x) ≈ 0.
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4.7.7 Example π = ln(−1)
i

= arccos(−1)

Since sin(π) = 0 is valid, here the method (32) of first degree fails. With f(x) = cos(x) + 1,
f ′(x) = − sin(x), and f ′′(x) = − cos(x) results by the method (99) of 2nd degree:

xn+1 = xn −
sin(xn)

cos(xn)
±
√

sin(xn)2 + 2 (cos(xn) + 1) cos(xn)

cos(xn)
=

= xn − tan(xn)±
√

1 + 2 cos(xn) + cos(xn)2

cos(xn)
=

= xn − tan(xn)± 1 + cos(xn)

cos(xn)
. (100)

Indeed, this method works on two analogous calculation ways.
By this follows the iteration, starting with x0 = 0 and yielding 2 solutions ±π:

x1 = 2, 0000000 x1 = −2, 0000000
x2 = 2, 7820419 x2 = −2, 7820419
x3 = 3, 0896186 x3 = −3, 0896186
x4 = 3, 1402873 x4 = −3, 1402873
x5 = 3, 1415918 x5 = −3, 1415918
x6 = 3, 1415927 x6 = −3, 1415927
x7 = 3, 1415927 x7 = −3, 1415927

4.7.8 Example ln(2)

The method (99) yields a further calculation way to calculate ln(2). f(x) = exp(x)− 2 and
f ′(x) = f ′′(x) = exp(x) is valid for this:

xn+1 = xn − 1±
√

exp(xn)2 − 2 (exp(xn)− 2) exp(xn)

exp(xn)
=

= xn − 1±
√

4 exp(xn)− exp(xn)2

exp(xn)
= xn − 1±

√
4

exp(xn)
− 1 . (101)

The iteration yields, starting with x0 = 0, where the version with −√. . . is divergent:
x1 = 0, 7320508
x2 = 0, 6931371
x3 = 0, 6931472
x4 = 0, 6931472

Therefore, a third calculation way to calculate ln(2) has been found.

4.7.9 Newton’s Iterations of Higher Degree

In principle, also Newton’s iterations of higher degree can be built analogously:

• For 1st degree (32), linear algebra and the derivative rules are sufficient.

• For 2nd degree (99), quadratic algebra and the derivative rules are sufficient.

• For 3rd degree, cubic algebra and the derivative rules are sufficient.

• For nth degree, algebra of nth degree and the derivative rules are sufficient.

Here, finding the algebra of nth degree turns out to be the greater problem.

35



4.8 Quadratic Functions
4.8.1 Definition

As quadratic function is called a function, of which the building of the inverse function
needs the solution of a quadratic equation. For checking of the result, always at least two
checks must be calculated, what now is demonstrated.

4.8.2 Hyperbolic Sine

The hyperbolic sine54 is defined the following55:

y = sinh(x) := i sin

(
x

i

)
=

ex − e−x

2
= − sinh(−x) . (102)

Its inverse function is called inverse hyperbolic sine56 and is built the following57:

x = arsinh(y) = arsinh

(
ex − e−x

2

)
⇔

2 y = ex − e−x ⇔
(ex)2 − 2 y (ex)− 1 = 0 ⇔

(ex)1,2 = y ±
√
y2 + 1 ⇔

x1,2 = arsinh(y)1,2 = ln

(
y ±

√
y2 + 1

)
.

The checking calculations yield:

x = arsinh(y) = ln

ex − e−x

2
±

√(
ex − e−x

2

)2

+ 1

 = ln

(
ex − e−x

2
± ex + e−x

2

)
,

y = sinh(x) =
y ±

√
y2 + 1− 1

y±
√
y2+1

2
=

y ±
√
y2 + 1 + y ∓

√
y2 + 1

2
= y .

Here turns out, that only + leads to the solution58, and not just ±:

x = arsinh(y) = ln

(
y +

√
y2 + 1

)
. (103)

This means, that also the inverse function of a quadratic function can be unambiguous. To
check these facts, at least two checking calculations are to be done always. A third check
results for example by a diagram of the functions. The inverse hyperbolic sine has got a
real solution for y ≥ 0.

54Latin: sinus hyperbolicus
55[1987BSGZZ], section 2.5.2.3.1., page 187
56Latin: area sinus hyperbolicus
57[1987BSGZZ], section 2.5.2.3.4., page 189
58[1987BSGZZ], section 2.5.2.3.4., page 189
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4.8.3 Hyperbolic Cosine

The hyperbolic cosine59 is defined the following60:

y = cosh(x) := cos

(
x

i

)
=

ex + e−x

2
= cosh(−x) . (104)

Its inverse function is called inverse hyperbolic cosine61 and is built the following62:

±x = arcosh(y) = arcosh

(
ex + e−x

2

)
⇔

2 y = ex + e−x ⇔
(ex)2 − 2 y (ex) + 1 = 0 ⇔

(ex)1,2 = y ±
√
y2 − 1 ⇔

x1,2 = arcosh(y)1,2 = ln

(
y ±

√
y2 − 1

)
.

The checking calculations yield:

x = arcosh(y) = ln

ex + e−x

2
±

√(
ex + e−x

2

)2

− 1

 = ln

(
ex + e−x

2
± ex − e−x

2

)
,

y = cosh(±x) =
y ±

√
y2 − 1 + 1

y±
√
y2−1

2
=

y ±
√
y2 − 1 + y ∓

√
y2 − 1

2
= y .

Here turns out, that ± leads to the solution63:

x = arcosh(y) = ln

(
y ±

√
y2 − 1

)
. (105)

This means, that the inverse function of a quadratic function can be ambiguous. To check
these facts, at least two checking calculations are to be done always. A third check results
for example by a diagram of the functions. The inverse hyperbolic cosine has got a real
solution for y ≥ 1 only.
The following hyperbolic equation64 exists, which justifies the names hyperbolic sine and
hyperbolic cosine:

cosh(x)2 − sinh(x)2 = 1 . (106)

The correctness of these facts (106) results after inserting the definitions (104) and (102) by
expanding multiplication, or from geometric considerations.
Furthermore, the following connection is valid:

sinh(x) + cosh(x) =
ex + e−x

2
+

ex − e−x

2
= ex . (107)

59Latin: cosinus hyperbolicus
60[1987BSGZZ], section 2.5.2.3.1., page 187
61Latin: area cosinus hyperbolicus
62[1987BSGZZ], section 2.5.2.3.4., page 189
63[1987BSGZZ], section 2.5.2.3.4., page 189
64[1987BSGZZ], sections 2.5.2.3.3. and 2.6.6.1., page 188 and 224
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4.8.4 Hyperbolic Tangent

The hyperbolic tangent65 is defined the following66:

y = tanh(x) := i tan

(
x

i

)
=

sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
= − tanh(−x) . (108)

Its inverse function is called hyperbolic arc tangent67 and is built the following68:

x = artanh(y) = artanh

(
ex − e−x

ex + e−x

)
⇔(

ex + e−x
)
y = ex − e−x ⇔

(y − 1) (ex)2 + y + 1 = 0 ⇔

(ex)1,2 = ±
√

1 + y

1− y
⇔

x1,2 = artanh(y)1,2 = ln

(
±
√

1 + y

1− y

)
.

The checking calculations yield:

x = artanh(y) = ln

±
√√√√1 + ex−e−x

ex+e−x

1− ex−e−x

ex+e−x

 = ln

(
±
√

2 ex

2 e−x

)
= ln (±ex) ,

y = tanh(x) =
±
√

1+y
1−y ∓

√
1−y
1+y

±
√

1+y
1−y ±

√
1−y
1+y

=
1 + y − (1− y)

1 + y + 1− y
=

2 y

2
= y .

Here turns out, that only + leads to the solution69, and not just ±:

x = artanh(y) = ln

(√
1 + y

1− y

)
=

1

2
ln

(
1 + y

1− y

)
. (109)

The hyperbolic arc tangent has got a real solution for −1 ≤ y ≤ 1 only.

4.8.5 Hyperbolic Cotangent

The hyperbolic cotangent70 is defined the following71:

y = coth(x) :=
cot

(
x
i

)
i

=
cosh(x)

sinh(x)
=

1

tanh(x)
=

ex + e−x

ex − e−x
= − coth(−x) . (110)

65Latin: tangens hyperbolicus
66[1987BSGZZ], section 2.5.2.3.1., page 187
67Latin: area tangens hyperbolicus
68[1987BSGZZ], section 2.5.2.3.4., page 189
69[1987BSGZZ], section 2.5.2.3.4., page 189
70Latin: cotangens hyperbolicus
71[1987BSGZZ], section 2.5.2.3.1., page 187
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Its inverse function is called inverse hyperbolic cotangent72 and is built the following73:

x = arcoth(y) = arcoth

(
ex + e−x

ex − e−x

)
⇔(

ex − e−x
)
y = ex + e−x ⇔

(y − 1) (ex)2 − y − 1 = 0 ⇔

(ex)1,2 = ±
√
y + 1

y − 1
⇔

x1,2 = arcoth(y)1,2 = ln

(
±
√
y + 1

y − 1

)
.

The checking calculations yield:

x = arcoth(y) = ln

±
√√√√ ex+e−x

ex−e−x + 1

ex+e−x

ex−e−x − 1

 = ln

(
±
√

2 ex

2 e−x

)
= ln (±ex) ,

y = coth(x) =
±
√

y+1
y−1 ±

√
y−1
y+1

±
√

y+1
y−1 ∓

√
y−1
y+1

=
y + 1 + (y − 1)

y + 1− (y − 1)
=

2 y

2
= y .

Here turns out, that only + leads to the solution74, and not just ±:

x = arcoth(y) = ln

(√
y + 1

y − 1

)
=

1

2
ln

(
y + 1

y − 1

)
. (111)

The inverse hyperbolic cotangent has got a real solution for −1 ≤ 1
y ≤ 1 only.

The following identity75 exists, which can be understood by canceling:

tanh(x) coth(x) =
sinh(x)

cosh(x)

cosh(x)

sinh(x)
= 1 . (112)

4.8.6 Hyperbolic Secant

The hyperbolic secant76 is defined the following77:

y = sech(x) := sec

(
x

i

)
=

tanh(x)

sinh(x)
=

1

cosh(x)
=

2

ex + e−x
= sech(−x) . (113)

Its inverse function is called inverse hyperbolic secant78 and is built the following:

±x = arsech(y) = arsech

(
2

ex + e−x

)
⇔

72Latin: area cotangens hyperbolicus
73[1987BSGZZ], section 2.5.2.3.4., page 189
74[1987BSGZZ], section 2.5.2.3.4., page 189
75[1987BSGZZ], section 2.5.2.3.3., page 188
76Latin: secans hyperbolicus
77[1987BSGZZ], section 2.5.2.3.1., page 187
78Latin: area secans hyperbolicus

39



2

y
= ex + e−x ⇔

(ex)2 − 2

y
(ex) + 1 = 0 ⇔

(ex)1,2 =
1

y
±
√

1

y2
− 1 ⇔

x1,2 = arsech(y)1,2 = ln

(
1

y
±
√

1

y2
− 1

)
.

The checking calculations yield:

x = arsech(y) = ln

ex + e−x

2
±

√(
ex + e−x

2

)2

− 1

 = ln

(
ex + e−x

2
± ex − e−x

2

)
,

y = sech(±x) =
2

1
y ±

√
1
y2 − 1 + 1

1
y
±
√

1
y2−1

=
2

1
y ±

√
1
y2 − 1 + 1

y ∓
√

1
y2 − 1

= y .

Here ± leads to the solution and can be expressed by (105):

x = arsech(y) = ln

(
1

y
±
√

1

y2
− 1

)
= arcosh

(
1

y

)
. (114)

The inverse hyperbolic secant has got a real solution for 0 ≤ y ≤ 1 only.
The following identity79 exists, which can be understood by expanding multiplication:

sech(x)2 + tanh(x)2 =
1 + sinh(x)2

cosh(x)2
=

cosh(x)2

cosh(x)2
= 1 . (115)

4.8.7 Hyperbolic Cosecant

The hyperbolic cosecant80 is defined the following81:

y = csch(x) :=
csc

(
x
i

)
i

=
coth(x)

cosh(x)
=

1

sinh(x)
=

2

ex − e−x
= −csch(−x) . (116)

Its inverse function is called inverse hyperbolic cosecant82 and is built the following:

x = arcsch(y) = arcsch

(
2

ex − e−x

)
⇔

2

y
= ex − e−x ⇔

(ex)2 − 2

y
(ex)− 1 = 0 ⇔

(ex)1,2 =
1

y
±
√

1

y2
+ 1 ⇔

x1,2 = arcsch(y)1,2 = ln

(
1

y
±
√

1

y2
+ 1

)
.

79[1987BSGZZ], section 2.5.2.3.3., page 188
80Latin: cosecans hyperbolicus
81[1987BSGZZ], section 2.5.2.3.1., page 187
82Latin: area cosecans hyperbolicus
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The checking calculations yield:

x = arcsch(y) = ln

ex − e−x

2
±

√(
ex − e−x

2

)2

+ 1

 = ln

(
ex − e−x

2
± ex + e−x

2

)
,

y = csch(x) =
2

1
y ±

√
1
y2 + 1− 1

1
y
±
√

1
y2 +1

=
2

1
y ±

√
1
y2 + 1 + 1

y ∓
√

1
y2 + 1

= y .

Here, only + leads to the solution and can be expressed by (103):

x = arcsch(y) = ln

(
1

y
+

√
1

y2
+ 1

)
= arsinh

(
1

y

)
. (117)

The inverse hyperbolic cosecant has got a real solution for y ≥ 0 only.
The following identity83 exists, which can be understood by expanding multiplication and
(106):

coth(x)2 − csch(x)2 =
cosh(x)2 − 1

sinh(x)2
=

sinh(x)2

sinh(x)2
= 1 . (118)

4.8.8 Sine

The sine84 is defined the following:

y = sin(x) :=
sinh (ix)

i
=

eix − e−ix

2 i
= − sin(−x) . (119)

Its inverse function is called arc sine85 and is built the following86:

x = arcsin(y) = arcsin

(
eix − e−ix

2 i

)
⇔

2 i y = eix − e−ix ⇔(
eix
)2
− 2 i y

(
eix
)
− 1 = 0 ⇔(

eix
)

1,2
= i y ±

√
1− y2 ⇔

x1,2 = arcsin(y)1,2 =
ln
(
i y ±

√
1− y2

)
i

.

The checking calculations yield:

x = arcsin(y) =

ln

(
ei x−e−i x

2 ±
√

1−
(

ei x−e−i x

2 i

)2
)

i
=

ln
(

ei x−e−i x

2 ± ei x+e−i x

2

)
i

,

y = sin(x) =
i y ±

√
1− y2 − 1

i y±
√

1−y2

2 i
=

i y ±
√

1− y2 + i y ∓
√

1− y2

2 i
= y .

83[1987BSGZZ], section 2.5.2.3.3., page 188
84Latin: sinus for arc
85Latin: arcus sinus for radial arc angle, where the sine of which is x.
86[1987BSGZZ], section 2.5.2.1.6., page 184
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Here turns out, that only + leads to the solution, and not just ±:

x = arcsin(y) =
ln
(
i y +

√
1− y2

)
i

= arg

(
i y +

√
1− y2

)
. (120)

The arc sine has got a real solution for −1 ≤ y ≤ 1 only. Then i y +
√

1− y2 is a complex
number with absolute value

√
1− y2 + y2 = 1, thus positioned on the unity circle.

4.8.9 Cosine

The cosine87 is defined the following:

y = cos(x) := cosh (ix) =
eix + e−ix

2
= cos(−x) . (121)

Its inverse function is called arc cosine88 and is built the following:

±x = arccos(y) = arccos

(
eix + e−ix

2

)
⇔

2 y = eix + e−ix ⇔(
eix
)2
− 2 y

(
eix
)

+ 1 = 0 ⇔(
eix
)

1,2
= y ±

√
y2 − 1 ⇔

x1,2 = arccos(y)1,2 =
ln
(
y ± i

√
1− y2

)
i

.

The checking calculations yield:

±x = arccos(y) =

ln

(
ei x+e−i x

2 ±
√(

ei x+e−i x

2

)2
− 1

)
i

=
ln
(

ei x+e−i x

2 ± ei x−e−i x

2

)
i

,

y = cos(±x) =
y ± i

√
1− y2 + 1

y±i
√

1−y2

2
=

y ± i
√

1− y2 + y ∓ i
√

1− y2

2
= y .

Here turns out, that ± leads to the solution:

x = arccos(y) =
ln
(
y ± i

√
1− y2

)
i

= arg

(
y ± i

√
1− y2

)
. (122)

The arc cosine has got a real solution for −1 ≤ y ≤ 1 only.
The following circle equation89 exists, which justifies the trigonometric names sine and
cosine, agreeing to Pythagoras’ theorem:

cos(x)2 + sin(x)2 = 1 . (123)

The correctness of these facts (123) results after inserting of the definitions (119) and (121)
by expanding multiplication, or from geometric considerations.
Furthermore, the following connection is valid:

cos(x) + i sin(x) =
eix + e−ix

2
+ i

eix − e−ix

2 i
= eix . (124)

87Latin: cosinus
88Latin: arcus cosinus
89[1987BSGZZ], sections 2.5.2.1.3. and 2.6.6.1., page 180 and 222–223
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4.8.10 Tangent

The tangent90 is defined the following91:

y = tan(x) :=
tanh (ix)

i
=

sin(x)

cos(x)
=

eix − e−ix

i (eix + e−ix)
= − tan(−x) . (125)

Its inverse function is called arc tangent92 and is built the following:

x = arctan(y) = arctan

(
eix − e−ix

i (eix + e−ix)

)
⇔(

eix + e−ix
)

i y = eix − e−ix ⇔

(i y − 1)
(
eix
)2

+ i y + 1 = 0 ⇔(
eix
)

1,2
= ±

√
1 + i y

1− i y
⇔

x1,2 = arctan(y)1,2 =
ln
(
±
√

1+i y
1−i y

)
i

.

The checking calculations yield:

x = arctan(y) =

ln

±
√√√√1+ ei x−e−i x

ei x+e−i x

1− ei x−e−i x

ei x+e−i x


i

=
ln

(
±
√

2 ei x

2 e−i x

)
i

=
ln
(
±eix

)
i

,

y = tan(x) =
±
√

1+i y
1−i y ∓

√
1−i y
1+i y

i
(
±
√

1+i y
1−i y ±

√
1−i y
1+i y

) =
1 + i y − (1− i y)

i (1 + i y + 1− i y)
=

2 i y

2 i
= y .

Here turns out, that only + leads to the solution93, and not just ±:

x = arctan(y) =
ln
(√

1+i y
1−i y

)
i

=
ln

(
1+i y√
1+y2

)
i

= arg (1 + i y) . (126)

The arc tangent has got a real solution for all real y, too.
For comparison, arg (x+ i y) = arg(z) yields a result in the full rotation, while the main
value (88) is restricted for real arguments y to results x with −π

2 ≤ x ≤ π
2 . The notion

main value comes from the fact, that to the logarithm always an integer multiple of 2π i
can yet be added, thus all possible results are taken into account. If this integer number is
zero, then the result of the logarithms is also called main value. As a consequence, all arc
functions of trigonometry have got a period of 2π, which does not always occur explicitly
in the result.
Therefore, some programming languages offer the traditional arc tangent (88) with one real
argument and also the expanded arc tangent with two real arguments.

90Latin: tangens
91[1987BSGZZ], section 2.5.2.1.3., page 180
92Latin: arc tangent
93[1987BSGZZ], section 2.5.2.3.4., page 189
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4.8.11 Cotangent

The cotangent94 is defined the following95:

y = cot(x) := i coth (ix) =
cos(x)

sin(x)
=

1

tan(x)
= i

eix + e−ix

eix − e−ix
= − cot(−x) . (127)

Its inverse function is called arc cotangent96 and is built the following:

x = arccot(y) = arccot

(
i
eix + e−ix

eix − e−ix

)
⇔(

eix − e−ix
)
y = i

(
eix + e−ix

)
⇔

(y − i)
(
eix
)2
− y − i = 0 ⇔(
eix
)

1,2
= ±

√
y + i

y − i
⇔

x1,2 = arccot(y)1,2 =
ln
(
±
√

y+i
y−i

)
i

.

The checking calculations yield:

x = arccot(y) =

ln

±
√√√√ i ei x+e−i x

ei x−e−i x+i

i ei x+e−i x

ei x−e−i x−i


i

=
ln

(
±
√

2 i ei x

2 i e−i x

)
i

=
ln
(
±eix

)
i

,

y = cot(x) = i
±
√

y+i
y−i ±

√
y−i
y+i

±
√

y+i
y−i ∓

√
y−i
y+i

= i
y + i + (y − i)

y + i− (y − i)
=

2 i y

2 i
= y .

Here turns out, that only + leads to the solution, and not just ±:

x = arccot(y) =
ln
(√

y+i
y−i

)
i

=
ln

(
y+i√
y2+1

)
i

= arctan

(
1

y

)
= arg (y + i) . (128)

The arc cotangent has got a real solution for all real y. Also the arc cotangent can be
programmed as a function with two real arguments, usually the following:

arccot(y, x) = arctan(x, y) = arg(x+ i y) =
ln

(
x+i y√
x2+y2

)
i

. (129)

The following identity97 exists, which can be understood by canceling:

tan(x) cot(x) =
sin(x)

cos(x)

cos(x)

sin(x)
= 1 . (130)

94Latin: cotangens
95[1987BSGZZ], section 2.5.2.1.3., page 180
96Latin: arcus cotangens
97[1987BSGZZ], section 2.5.2.1.3., page 180
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4.8.12 Secant

The secant98 is defined the following99:

y = sec(x) := sech (ix) =
tan(x)

sin(x)
=

1

cos(x)
=

2

eix + e−ix
= sec(−x) . (131)

Its inverse function is called arc secant100 and is built the following:

±x = arcsec(y) = arcsec

(
2

eix + e−ix

)
⇔

2

y
= eix + e−ix ⇔(

eix
)2
− 2

y

(
eix
)

+ 1 = 0 ⇔

(
eix
)

1,2
=

1

y
±
√

1

y2
− 1 ⇔

x1,2 = arcsec(y)1,2 =
ln
(

1
y ±

√
1
y2 − 1

)
i

.

The checking calculations yield:

±x = arcsec(y) =

ln

(
ei x+e−i x

2 ±
√(

ei x+e−i x

2

)2
− 1

)
i

=
ln
(

ei x+e−i x

2 ± ei x−e−i x

2

)
i

,

y = sec(±x) =
2

1
y ±

√
1
y2 − 1 + 1

1
y
±
√

1
y2−1

=
2

1
y ±

√
1
y2 − 1 + 1

y ∓
√

1
y2 − 1

= y .

Here, ± leads to the solution and can be expressed by (122):

x = arcsec(y) =
ln
(

1
y ± i

√
1− 1

y2

)
i

= arccos

(
1

y

)
. (132)

The arc secant has got a real solution for −1 ≤ 1
y ≤ 1 only.

The following identity101 exists, which can be understood by (123):

sec(x)2 − tan(x)2 =
1− sin(x)2

cos(x)2
=

cos(x)2

cos(x)2
= 1 . (133)

4.8.13 Cosecant

The cosecant102 is defined the following103:

y = csc(x) := i csch (ix) =
cot(x)

cos(x)
=

1

sin(x)
=

2 i

eix − e−ix
= − csc(−x) . (134)

98Latin: secans
99[1987BSGZZ], section 2.5.2.1.1., page 178

100Latin: arcus secans
101[1987BSGZZ], section 2.5.2.1.3., page 180
102Latin: cosecans
103[1987BSGZZ], section 2.5.2.1.1., page 178
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Its inverse function is called arc cosecant104 and is built the following:

x = arccsc(y) = arccsc

(
2 i

eix − e−ix

)
⇔

2 i

y
= eix − e−ix ⇔(

eix
)2
− 2 i

y

(
eix
)
− 1 = 0 ⇔

(
eix
)

1,2
=

i

y
±
√

1− 1

y2
⇔

x1,2 = arccsc(y)1,2 =
ln
(

i
y ±

√
1− 1

y2

)
i

.

The checking calculations yield:

x = arccsc(y) =

ln

(
ei x−e−i x

2 ±
√

1 +
(

ei x−e−i x

2

)2
)

i
=

ln
(

ei x−e−i x

2 ± ei x+e−i x

2

)
i

,

y = csc(x) =
2 i

i
y ±

√
1− 1

y2 − 1
i
y
±
√

1− 1
y2

=
2 i

i
y ±

√
1− 1

y2 + i
y ∓

√
1− 1

y2

= y .

Here, only + leads to the solution and can be expressed by (120):

x = arccsc(y) =
ln
(

i
y +

√
1− 1

y2

)
i

= arcsin

(
1

y

)
. (135)

The arc cosecant has got a real solution for −1 ≤ 1
y ≤ 1 only.

The following identity105 exists, which can be understood by (123):

csc(x)2 − cot(x)2 =
1− cos(x)2

sin(x)2
=

sin(x)2

sin(x)2
= 1 . (136)

4.9 Derivatives of Quadratic Functions
4.9.1 Derivative of the Hyperbolic Sine

The derivative of the hyperbolic sine (102) yields106:

d sinh(x)

dx
=

d
(

ex−e−x

2

)
dx

=
ex + e−x

2
= cosh(x) . (137)

The derivative of the inverse hyperbolic sine (103) yields107:

d arsinh(y)

dy
=

d
(
ln
(
y +

√
y2 + 1

))
dy

=
1 + 2 y

2
√
y2+1

y +
√
y2 + 1

=
1√
y2 + 1

. (138)

104Latin: arcus cosecans
105[1987BSGZZ], section 2.5.2.1.3., page 180
106[1987BSGZZ], section 1.1.3.3., integral number 427., page 60
107[1987BSGZZ], section 1.1.3.3., integral number 192., page 46
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4.9.2 Derivative of the Hyperbolic Cosine

The derivative of the hyperbolic cosine (104) yields108:

d cosh(x)

dx
=

d
(

ex+e−x

2

)
dx

=
ex − e−x

2
= sinh(x) . (139)

The derivative of the inverse hyperbolic cosine (105) yields109:

d arcosh(y)

dy
=

d
(
ln
(
y ±

√
y2 − 1

))
dy

=
1± 2 y

2
√
y2−1

y ±
√
y2 − 1

=
±1√
y2 − 1

. (140)

4.9.3 Derivative of the Hyperbolic Tangent

The derivative of the hyperbolic tangent (108) yields110:

d tanh(x)

dx
=

d
(

sinh(x)
cosh(x)

)
dx

=
cosh(x)2 − sinh(x)2

cosh(x)2
=

1

cosh(x)2
. (141)

The derivative of the hyperbolic arc tangent (109) yields111:

d artanh(y)

dy
=

d
(

1
2 ln

(
1+y
1−y

))
dy

=
1

2

1− y
1 + y

(1− y) + (1 + y)

(1− y)2
=

1

1− y2
. (142)

4.9.4 Derivative of the Hyperbolic Cotangent

The derivative of the hyperbolic cotangent (110) yields112:

d coth(x)

dx
=

d
(

cosh(x)
sinh(x)

)
dx

=
sinh(x)2 − cosh(x)2

sinh(x)2
=

−1

sinh(x)2
. (143)

The derivative of the inverse hyperbolic cotangent (111) yields113:

d arcoth(y)

dy
=

d
(

1
2 ln

(
y+1
y−1

))
dy

=
1

2

y − 1

y + 1

(y − 1)− (y + 1)

(y − 1)2
=

1

1− y2
. (144)

Since the derivatives (142) and (144) are the same, artanh(y) and arcoth(y) distinguish by
a constant only, where the main value of which can be determined for y = 0 the easiest:

arcoth(y)− artanh(y) = arcoth(0)− artanh(0) =
ln(−1)− ln(1)

2
=

iπ

2
. (145)

This result is analogous to the sum (160) of arctan(y) and arccot(y)114.

108[1987BSGZZ], section 1.1.3.3., integral number 426., page 60
109[1987BSGZZ], section 1.1.3.3., integral number 220., page 48
110[1987BSGZZ], section 1.1.3.3., integral number 431., page 60
111[1987BSGZZ], section 1.1.3.3., integral number 57., page 38
112[1987BSGZZ], section 1.1.3.3., integral number 430., page 60
113[1987BSGZZ], section 1.1.3.3., integral number 57., page 38
114[1987BSGZZ], section 2.5.2.1.7., page 185
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4.9.5 Derivative of the Hyperbolic Secant

The derivative of the hyperbolic secant (113) yields:

d sech(x)

dx
=

d
(

1
cosh(x)

)
dx

=
cosh(x) 0− 1 sinh(x)

cosh(x)2
= −sech(x) tanh(x) . (146)

The derivative of the inverse hyperbolic secant (114) yields115:

d arsech(y)

dy
=

d
(
ln
(

1
y ±

√
1
y2 − 1

))
dy

=

− 1
y2 ±

− 2
y3

2
√

1
y2−1

1
y ±

√
1
y2 − 1

=
∓1

y
√

1− y2
. (147)

An independent calculation way results by (140):

d arsech(y)

dy
=

d arcosh
(

1
y

)
dy

=
±1√
1
y2 − 1

(−1

y2

)
=

∓1

y
√

1− y2
.

4.9.6 Derivative of the Hyperbolic Cosecant

The derivative of the hyperbolic cosecant (116) yields:

d csch(x)

dx
=

d
(

1
sinh(x)

)
dx

=
sinh(x) 0− 1 cosh(x)

sinh(x)2
= −csch(x) coth(x) . (148)

The derivative of the inverse hyperbolic cosecant (117) yields116:

d arcsch(y)

dy
=

d
(
ln
(

1
y +

√
1
y2 + 1

))
dy

=

− 1
y2 +

− 2
y3

2
√

1
y2 +1

1
y +

√
1
y2 + 1

=
−1

y
√

1 + y2
. (149)

An independent calculation way results by (138):

d arcsch(y)

dy
=

d arsinh
(

1
y

)
dy

=
1√

1
y2 + 1

(−1

y2

)
=

1

y
√

1 + y2
.

4.9.7 Derivative of the Sine

The derivative of the sine (119) yields117:

d sin(x)

dx
=

d
(

ei x−e−i x

2 i

)
dx

=
eix + e−ix

2
= cos(x) . (150)

115[1987BSGZZ], section 1.1.3.3., integral number 168., page 45
116[1987BSGZZ], section 1.1.3.3., integral number 196., page 46
117[1987BSGZZ], section 1.1.3.3., integral number 313., page 54
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The derivative of the arc sine (120) yields118:

d arcsin(y)

dy
=

d
(

1
i ln

(
i y +

√
1− y2

))
dy

=
i− 2 y

2
√

1−y2(
i y +

√
1− y2

)
i

=

=
i
√

1− y2 − y
−y + i

√
1− y2

· 1√
1− y2

=
1√

1− y2
. (151)

The derivatives of the inverse functions of quadratic functions motivate to think on inte-
grating reduction of fractions to higher terms, when searching for base integrals.

4.9.8 Derivative of the Cosine

The derivative of the cosine (121) yields119:

d cos(x)

dx
=

d
(

ei x+e−i x

2

)
dx

=
i eix − i e−ix

2
= i2

(
eix − e−ix

2 i

)
= − sin(x) . (152)

The derivative of the arc cosine (122) yields:

d arccos(y)

dy
=

d
(

1
i ln

(
y ± i

√
1− y2

))
dy

=
1∓ i 2 y

2
√

1−y2(
y ± i

√
1− y2

)
i

=
∓1√
1− y2

. (153)

An independent calculation way results due to the derivation of (122):

d arccos(y)

dy
=

d
(

1
i ln

(
y ±

√
y2 − 1

))
dy

=
1± 2 y

2
√
y2−1(

y ±
√
y2 − 1

)
i

=
±1

i
√
y2 − 1

=
∓1√
1− y2

.

Here, the comparison of this result with the result (153) yields:√
y2 − 1 = i

√
1− y2 ⇔ i

√
y2 − 1 = −

√
1− y2 . (154)

This result (154) can help to clear up many sign problems. Indeed, i = +
√
−1 is no positive

constant and therefore needs specific calculation rules.
The sum or difference of the derivatives (151) and (153) yields zero, thus arc sine and arc
cosine distinguish eventually by a constant120 only:

arcsin(y)± arccos(y) =
ln
(
i y +

√
1− y2

)
i

±
ln
(
y ± i

√
1− y2

)
i

=
ln(i)

i
=

π

2
. (155)

An independent calculaton way results due to the derivation of (122) with (154):

arcsin(y)± arccos(y) =
ln
(
i y +

√
1− y2

)
i

±
ln
(
y ±

√
y2 − 1

)
i

=
ln(i)

i
=

π

2
.

The result (154) urges to be careful, when placing i = +
√
−1 outside the brackets.

118[1987BSGZZ], section 1.1.3.3., integral number 164., page 44
119[1987BSGZZ], section 1.1.3.3., integral number 274., page 52
120[1987BSGZZ], section 2.5.2.1.7., page 185
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4.9.9 Derivative of the Tangent

The derivative of the tangent (125) yields121:

d tan(x)

dx
=

d
(

sin(x)
cos(x)

)
dx

=
cos(x)2 + sin(x)2

cos(x)2
=

1

cos(x)2
. (156)

The derivative of the arc tangent (126) yields122:

d arctan(y)

dy
=

d
(

1
2 i ln

(
1+i y
1−i y

))
dy

=
1

2 i

1− i y

1 + i y
· (1− i y) i + (1 + i y) i

(1− i y)2
=

1

1 + y2
. (157)

4.9.10 Derivative of the Cotangent

The derivative of the cotangent (127) yields123:

d cot(x)

dx
=

d
(

cos(x)
sin(x)

)
dx

=
− sin(x)2 − cos(x)2

sin(x)2
=

−1

sin(x)2
. (158)

The derivative of the arc cotangent (128) yields124:

d arccot(y)

dy
=

d
(

1
2 i ln

(
y+i
y−i

))
dy

=
1

2 i

y − i

y + i

(y − i)− (y + i)

(y − i)2
=

−1

1 + y2
. (159)

Since the sum of the derivatives (157) and (159) is zero, the sum of arctan(y) and arccot(y)
yields a constant, where the main value125 of which enables the calculation of π for all y:

arctan(y) + arccot(y) =
1

2 i
ln

(
1 + i y

1− i y
· y + i

y − i

)
=

ln
(

i+i y2

−i−i y2

)
2 i

=
ln(−1)

2 i
=

π

2
. (160)

This result is analogous to the difference (145) of arcoth(y) and artanh(y).

4.9.11 Derivative of the Secant

The derivative of the secant (131) yields126:

d sec(x)

dx
=

d
(

1
cos(x)

)
dx

=
cos(x) 0 + 1 sin(x)

cos(x)2
= sec(x) tan(x) . (161)

The derivative of the arc secant (132) yields127:

d arcsec(y)

dy
=

d
(

1
i ln

(
1
y ± i

√
1− 1

y2

))
dy

=

− 1
y2 ± i

2
y3

2
√

1− 1
y2

i
y ∓

√
1− 1

y2

=
±1

y
√
y2 − 1

. (162)

121[1987BSGZZ], section 1.1.3.3., integral number 326., page 54
122[1987BSGZZ], section 1.1.3.3., integral number 57., page 38
123[1987BSGZZ], section 1.1.3.3., integral number 287., page 52
124[1987BSGZZ], section 1.1.3.3., integral number 57., page 38
125[1987BSGZZ], section 2.5.2.1.7., page 185
126[1987BSGZZ], section 1.1.3.3., integral number 370., page 57
127[1987BSGZZ], section 1.1.3.3., integral number 224., page 48
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Independent calculation ways result via (153) or by the notation of (132):

d arcsec(y)

dy
=

d arccos
(

1
y

)
dy

=
∓1√
1− 1

y2

· −1

y2
=

±1

y
√
y2 − 1

.

d arcsec(y)

dy
=

d
(

1
i ln

(
1
y ±

√
1
y2 − 1

))
dy

=

− 1
y2 ±

− 2
y3

2
√

1
y2−1(

1
y ±

√
1
y2 − 1

)
i

=
±1

y
√
y2 − 1

.

These results show in comparison with (154), that for placing of i = +
√
−1 outside the

brackets is always to be considered a context, which reads here:√
1

y2
− 1 = i

√
1− 1

y2
⇔ i

√
1

y2
− 1 = −

√
1− 1

y2
. (163)

The difference of (154) and (163) is often overlooked for automated, numerical evaluation!

4.9.12 Derivative of the Cosecant

The derivative of the cosecant (134) yields128:

d csc(x)

dx
=

d
(

1
sin(x)

)
dx

=
sin(x) 0− 1 cos(x)

sin(x)2
= − csc(x) cot(x) . (164)

The derivative of the arc cosecant (135) yields:

d arccsc(y)

dy
=

d
(

1
i ln

(
i
y +

√
1− 1

y2

))
dy

=

− i
y2 +

2
y3

2
√

1− 1
y2(

i
y +

√
1− 1

y2

)
i

=
−1

y
√
y2 − 1

. (165)

An independent calculation way results by (151):

d arccsc(y)

dy
=

d arcsin
(

1
y

)
dy

=
1√

1− 1
y2

· −1

y2
=

−1

y
√
y2 − 1

.

The sum or difference of (162) and (165) yields zero, thus the analogous operation of arc
secant (132) and arc cosecant (135) yields a constant:

± arcsec(y) + arccsc(y) = ±
ln
(

1
y ± i

√
1− 1

y2

)
1

i
+

ln
(

i
y +

√
1− 1

y2

)
i

=
π

2
. (166)

An independent calculation way results via the derivation of (132) with (163):

± arcsec(y) + arccsc(y) = ±
ln
(

1
y ±

√
1
y2 − 1

)
1

i
+

ln
(

i
y +

√
1− 1

y2

)
i

=
π

2
.

128[1987BSGZZ], section 1.1.3.3., integral number 381., page 57
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