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Summary of a Uniform Theory of Gamma and Hypergeame
Functions

by
Hj. Mellin, Helsingfors (Finland)

Although it seems not to be unknown, that thera f&earty connection*) between the gamma functiah the
hypergeometric functions, to my knowledge theradsattention to this fact in the handbooks beinglisbed so far,
monographies and encyclopediae, that deal withthbhery of gamma functions or parts thereof. Everhia latest
elaborations of this kind indeed there is no menitig of the hypergeometric functions. In this preésglaboration | try
to plead a conception which is fundamentally déferto this and more generabmely, where | must consider the very
integration of all hypergeometric differential edisms by means of the gamma functions to be thpegprmain task of
a modern theory of that function itsefffter having established the general definitiortted gamma functions, | have
found Cauchy's integral theory to be a means td mgether the theory of these functions with theoty of the
hypergeometric functions to be a systematic whbteereby it has turned out, that the conventionebith of the gamma
function and Euler's integrals, as being preseintdthndbooks, monographies and encyclopediaesisjiragment of
this more general theory, which is totally suffitién regard to uniformity.

*) The same has been developed first by the au#imat by Mr. Pincherle completely. Our elaborations
concerning this are cited at the correspondingtioosi of this elaboration.

m § 1. Introduction to the Gamma Function

By the formula
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Sin[nz]::nzﬁ[l—é)zzﬂzﬁ(H%)e‘%-ﬁ(l—%)@% )

n=1 n=1

)

zZ
Sin[x Z] == 7z'Z| | [1— —2—] // PowerExpand
n

n=1

True

we have got a starting point belonging to the etgmef function theory, from which we can arriveidily at the
gamma function without compulsion. Thus by the fiorc

(e

Z\ _:z
F[2] ::rDl(uﬁ)e 7 2)
Sin[x Z] can be explessed the following:
Sin[x z] = z F[z] F[-7]. 3)

Now the left hand side of the substitutibr» z+ 1 changes the sign only, thus the question occurat will happen to
F[z] by this. The result is:

Flz+1] = z+n+l . z+2 ,z+3 _: z+n+1 1
::l_[ @"l::“m R S ——C ]
F[z] a3 Z*n n=co Z+ 1 zZ+2 Z+n
=D im (14 25 ettt
Z+ 1 n=co n
z+n+1 1 z+1 L
== (1+ )e ool /7 ExpandAll
z+1 (z+1)
True
Therefore exists
lim (1+ = + + = Lo [n])
n=oco 2 n 9 '
n
o 1
Limit | E s Log[n], n - o]
k=1
EulerGamma

? EulerGamma

EulerGamma is Euler's constant gamma, with numerical \egpeoximately equal to 0.577216.

With the symbolC for this limit, this is Euler's constant gamma, ae got the formula

-C

Flz+1] = —— F[Z, (4)

z+1

which gives an answer to the question above. Thistfonal equation becomes more simple, if we thice the gamma
function instead oF [z] by the definition
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Figl e C2 B e C2 er
2= zFlz z 1_[ 1+2 ®)

—EuIerGammaz
Gamma[z] == ————— Limit [l_l

. N > oo] // FullSimplify

True
Then with the equations (4) and (5) succeeds
I[z+ 1] ==zI[4, (6)
Gamma[z + 1] == zGamma[Z] // FullSimplify
True

while equation (3) gets the form:

Mz T[l-z ==(Sin[ﬂ Z] ) 7)

Gamma[z] Gamma[l - 7] == // FullSimplify

in[x Z]

True

Due to the definition of is

e = lim (1+ l) eLOg[n]—l_%_..._%
n

N=oc0

= lim (1+ %)(“ %) (1 %)e—l—%—_..._%

n=oo
:ﬁ(“%)@—%.

1 z+1 Logln] zZ+n+1 Z+n zZ+3 Z+2
(1+ ]e 9 ==( )( )( ]( )/. {z - 0} // ExpandAll
(z+1) n Z+n Z+3 z+2/)\z+1

=
=

True

From this follows first, thaC is positive due t(§1+ %)e‘% < 1, and second, that because of equation (5) the gamm
function can also be presented the following:

1T @+dy
Iz Tz l—[ 1+%2 | (8)

o~C7 o 177 L+ 2 =
| | — == — —— [ {e s |(1+—) e™7} /. {Product[a_, {_}]:» a}
z

n=1 n n=1 n n=

True

From this follows furthermorE[1] == 1 and
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1
1 + -
Limit [— —“)— z- 1]
z 1+2
1
Izl = lim L2.n o, 9
[]__n:ooZ(Z+l)"'(Z+n) ' ®)
Product|1 + % {n, 1, N}]Z Product[n, {n, 1, N}]

== NZ// Simpli
zProduct[1+ Z, {n, 1, N}] zProduct[z+n, {n, 1, N}] piity

Limit @@ {First[%], N - oo}

(N?—(1+ NY») N!

—_— == 0
zPochhamméf + z, N]

0

Combining this formula with the one following froequation (6)

riz = I'z+n+1] . 1-2.-..n , Tlz+n+1]
T z(z+1)---(z+n)  z(z+1) ---(z+n) ntnz '
the result is
r 1
im __[Zln-i-_] =1. (10)
n=oco n! n?
Gamma[z+ n + 1]
Limit[ ,n—>oo] =1
n!'(n+ p)*
True

Vice verca obviously follows formula (9) from eqiasis (6) and (10), thuB[Z] is defined by these two properties (6)
and (10) completely.

n! Zl“[z+n+1]

Gamma[z] == Limit | el n —
k=0 :

[ AT[z+n+1] > n'n%}, n > oo

True
This introduction to the theory of gamma functiteas also been suggested by me in a former elabotati

*) Om Gammafunktionen. Ofvers. af. Sv. Vetenskapsakniens Forh. 1883, No. 5.

m 8§ 2. The Behaviour ofris+it] for |t| =

For the applications of the gamma function on tieddfof definite integrals the following sentence of
fundamental importance.

If the variablez = s + 7t is limited to an arbitrary stripe of restricted d¢h being parallel to the imaginary axis
by e = s = £, and if furthermore is assumed
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|Tls+it]| =e 2. ([t 7| V2r +¢€], (11)
then by increasind t | € reaches equally the limit null.
Because of equations (6) and (7) is
2 x 1
(ITit] ) = VI T—t] = _| ﬁ —e BNt ’ V27 +el. (12)
@7{ _@—ﬂ'

i 2T Fulisimplity
== ullsSimpli
ZitSinlint] | t(er — e P

True

Thus formula (11) is valid foF[i t]. Now the task is to find out the behaviour of thetientI'[s+ it] : T'[it]. By use
of equation (8) and by multiplication by

s T— 1+ -1 s
1 == (it)5(1+ i) M
it 1+ 1y

N 1 \S
1 S (1+ it+n
1 == Limit [(it)s(1+ —] ]_[ ﬁ /. {s=>1}, N> oo]
it n=1 (1+-r-1-)
True
results:
Ms+it] 1 T ]@+3)
Tt 1+2 1+ =
n=1
T e+’
=@y = |
n=0 it+n
oo 1138 oo 14\2
T[s+it] 1 (1+=) 1 (1+=)
—— == - ]_[ “— /.{riz] :»—l_l—”z-}/. {Productfa_, {_ }1 > a} //
I'lit] 1+ - 1+ - z 1+=
i n=1 it+n n=1 n
Simplify
True
oo S 00 1 S
1 1+ 118 1+ -
[ - l_l “S) ][(it)s(1+_—) ]_[—( “1”‘5) ]::
1+H n=1 1+ it+n it n=1 (1+T1-)
1+ ) © 1+ )
G)° w- /.{n - 0) ]_[M- /. (Productfa_, {_ }] = &
1+ 1+ =
it+n n=1 it+n
True

From this follows
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S+zﬂ
(zz 5 T[i

i (s Log

n=0

o 750

(e

=) e Ml
- O(it+n)2 it+n?’

n=

iv° H L o .
Log[ n=0 it+n — Z (S Log[l +
@® it+n

{Productfa_,{ }]:a, Suma_,{ }]: a}// PowerExpand// Simplify

| - Log[1+

:ztin])/'

Sum::div: Sum does not converge.

True
1 S
Log|1 —Log|1 .
[stosla-+ s 1= toul+ )
Log[l+ x_] :» EvaluatefNormal[Serie§Log[1 + x], {X, 0, 2111 // Simplify
(-1+9s
2(n+11)?

whereP[x] stands for a series of positive integer powers, which converges fof x| <1 and|s x| <1, and whose
coefficients are simple terms efbeing independent af With the limitation—R < s< +R andR being an arbitrary

positive number, the absolute value of

stays beneath a finite limi for n =

0,12--

Pl

1
it+n

|

(o)

M

t2 +n2

2M

I[s+it] © M
iLog[(lzt)Sr[m] <r;)|,zt+n|2
= 2M 2M

_Z_;(lt|+n)2<r1z_;)(|t|+n—1)(|t|+n)
2M

// Apart

(Abs[t] + n — 1) (Abs[t] + n)

Z"’: 2M _2M

4 (Abs[t]+n ~ 1) (Abslt] + ) " Abs[t] -1
2M 2™

—1+n+Abgt] n+Abgt]

True

Thus with the assumption

|t]-1

- and eacht fulfilling the condition |t] > R+ 1, where M is
independent ofi andt. Therefore from the formula above results
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=1+¢€ (13)

I'[s+it]
(G|

is equallylim e == 0 for | t| == co, Wheres stays between arbitrary finite limitations. Frone tequations (12) and (13)
finally results formula (11), which obviously cals@be written the following:

T2 | (=) 2" |(Z2)| - |V2r +€]. (14)

€S9 7 Simplify

. . 82
V52+t2 ==\/T2-lelt[ 1+t—2,t—)oo]

z

Although to a certain degree this formula is camdi within Stirling's formula*), which in the yedB89 has
been extended first bgtielties to complex arguments, it is worth to be elucidaseni developed to a particular
sentence in the above given form being importan@fiplications, especially since the derivatioritafan be done by
simpler assumptions than the one of Stirling's fdemMr. Pincherle has reached this sentence above**) approximately
already in the year 1888, while the same has beamrscompletely by me in an elaboration***) of tiiear 1890. The
proof above is a simplification of the former oi¢.the same time MrJensenhas derived a formulat), which contains
the above one as a special case.

*) Sur le développement de ldga). Journal de Math. (4) vol. 5; 1889.

**) Sulle funzioni ipergeometriche generalizzateccAd. dei Lincei. Rend. (4). vol. 4; 1888. If inuatjon

(14) s— 3 is replaced byn + e wherem is the largest integer number being containesl then with— 2 < e < = the

result of Pincherle is reached.

**) Zur Theorie der linearen Differenzengleichumgerster Ordnung. Acta Math. vol. 15. The elaboratf
Stieltjes was not known to me at that time.

1) Gammafunktionens Theorie, Nyt Tidskrift for Matiol. 2 C.

m 8§ 3. Definition of the Gamma Functions

The functional equation of the gamma function &pacial case of
Flz+ 1] = +R[Z] F[z], (15)

whereR|[Zz] stands for the rational function

_(@=p1)- (2~ pm)
Ra=| (z-01) (2= 0n) ) 4o
We consider the expression
Glz] =T(z-p1l- - -T[z=pmlT[1+01-2]- - -T[l+0n -2 17)

to be the basic form fulfilling the equation
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Glz+1] = (-1)" Rz G[2, (18)

Glz+1] == (-1)" 2= p) @ pm) Gl /.
(z-01)(z—-0n)
{G[z_] » Gamma[z - p1] Gamma[z - p,] Gamma[l + o1 — zZ] Gamma[l + o, — 2]} /.
{n - 2} // FullSimplify

True

from which all remaining solutions of equation (X2n be yielded by multiplication by periodic fuocis, and which is
connected to the also remarkable solution

Tz p1l- - -T[z— pml

A= o Tz= ol (19)

Hiz+ 1] == ZPD 7P ) iz
T (z-0)@Z-07) ' " Gammalz - o] Gamma[z — o]

Gamma[z - p;] Gamma[z— pn]

} 1/ FullSimplify
True
by the formula due to equation (7)

a"H{[z] == G[Z] Sin[x (z— o1)]- - - Sin[x (z— op)]. (20)

7" H[z] = G[Z] Sin[x (z—- o1)] Sin[x (z—- o)1 /.
{GIz_] :» Gamma[z - p;] Gamma[z - pn] Gamma[1 + oy — Z] Gamma[1 + o7, — 2],
Gamma[z - p;] Gamma[z — p,]

: : : 2} // FullSimpli
[z_]=> Gamma[z - ;] Gamma[z — o] } /. {n > 2} // FullSimplify

True

The most general solution of equation (15) obvipusin be presented in the forPiz] G[z], with P being an
arbitrary function with the property[z+ 1] == £ P[Z]. In the theory of the gamma functions howeverdliemo use to
handleP[z] as a totally undetermined periodical function. Tméformity of this theory rather requires, thatyothe
solutions of equation (15) are considered, thatlté&y confining the factoP[Z] in the following way:

I. P[Z] is an unequivocal analytic function with the prapé[z + 1] == + P[Z].

II. In a certain parallel stripe < Re[z] < @ + 1 the functionP[z] has got a finite number at the most of
singular locations, which are all polesR]f].

1. If a positive constanC is assumed to be sufficiently large, thefs+ it] e=C!l reaches equally null by
increasing| t|.

The most general functioB[z] with this properties results by the following carsions. All the poles oP[Z],
that are located in the stripe < Re[z] < a+ 1, shall be found in the seriem, ay, - -+, a, as often as their
corresponding ordinary numbers tell. Then

P1[2z] = P[z] Sin[x (z—ay)]- - - Sin[z (z- a,)]

is an entire function with the properBy[z+ 1] == £ P;[z]. Because of Il can be assumed to be so large, that the
expression
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Sinfz(z-ay)]- - - Sinfz (z- a,)]

P2[z] = P[Z] Sinz(z—-cy)]- - - Sinz (z— c)]

has got the propertym P,[s+it] == 0 for |t]| == co. To simplify the argumentation, we choose thesz@ such a
way, that the difference of any two of them doesgiege an integer number. The consta@tsC,, - - -, C, then can be
determined in such a way, that the expression

P [Z]——P [Z]—(L— + .. +L_)
3 2 Sinlz (z— ¢yl Sinlz (z— ¢yl
is regularly at the positions= ¢y, Cy, - - -, C. If furthermorea is choosen in such a way, tHat[z+ 1] == —P,[Z] is
valid, so alsoPs[z+ 1] == —P5[Z] is valid, and thudPs[z] is an entire function. Moreovelim Pz[s+ it] == 0 for

| t] == oo, thusP3[z] must be a constant, which indeed is null.

From this forP[Zz] results the expression

_ Sin[ﬂ' (z-cp)]- - -Sin[n (z—c)] ( C: C,\ )

A= Sra=a0l - Sr-a] \Sr-cl ' Snrz-ol e

and vice versa also each expression of this formonisly has got the properties in question, namdly I11.

PIZ == Sin[zr (z- ¢)] Sin[xr (z- ¢y)] ( C1 C

Sin[z (z—-¢1)] * Sin[z (z- )]
C: Cy

Sin[z (z—c1)] * Sin[z (z-c))]

. . ) /. Flatten[Solve
Sin[x (z- a1)] Sin[x (z— a,)]

b . Sin[x (z— ay)] Sin[x (z—- a,)] b
2l == Pl Sin[z (z - c)] Sinfx (z—= ¢l a Z[Z]_)(

)} pral

True

Therefore the following definition should not seémbe unfoundedWe discuss a gamma function to be each
function that can be presented by the fd?fa] G[z], whereG and P stand for the general expressions (17) and (21).
This definition obviously is completely congruenittwthe other oneWe discuss a gamma function to be each
monogene function fulfilling the functional equati(l5), which beyond this has got the above givepgaties Il and
IIl'in a certain parallel stripee = RdZ] = & + 1.

Its complete argumentation to this definition isirid only later (88 10, 11, 12) by the result, #wth integral of
the form

1 _
. fF[z]x Zdz,
2ni Jo

with F[Z] being an arbitrary gamma function in the sencevabandL being a fitting integration curvation, is a
presentation of a hypergeometric function, whikoalice versa each hypergeometric function carxpeessed by such
an integral.

By reason of the formulae (7), (17) and (21) eaamiga function can be expressed by the elementanynga
function/[2].

Due to the definition given above obviously alioaal and also all trigonometric functions belonghe gamma
functions.
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m 8§ 4. The Behaviour of the Gamma Functions(s+it] for [t] =

According to the expositions above each gamma ilumcian linearly be presented by expressions ofdihma

( Sinzr(z-cy)]- - - Sin[r (z— ¢p)] ) 22)

Sinfz(z—-ay)]- - - Sinfz (z—-a,)]

The behaviour of these expressions fdf == co by use of equation (14) can be presented moreletbthhan done
above. The following important formulae need toebgphasized especially:

|Gl | (=) % " f[s, 1]; (23)
|HIZ | (= e 7 "M f[s,]; (24)
|Gl2] Sinlx (z—cy)]- - - Sinlr (z— cp)l | = ™7 P f[s 1], (25)
with f[s, t] having the form
fs =|(Z™"ED¥)|gls ], k=014 - +Tn—p1— - —pm (26)
Correction of misprint:
fIs, 0 =| (Z™ "2 | gls, 0, =1+ - - #pm—0i— - —0m,

while g[s, t] stands for a positive variable, which by incregsjn| converges equally to a finite limit, which is ragro
and independent o if sis confined to an arbitrary finite interval< s < B. Thus the size of [s, t] can increase or
decrease as a finite powertadt the most.

m+n 1

e~z mABSI Apg[Am-m (*i)-K] gls t] ==T[z- p1]T[z= pulT[1+ 01 - ZT[1+ 0n - 2] /.
{F[a_.+ b .7 e~z Abslt] Abs[za+bs_%] V ols t]l, k= p1+pm—01— O'n} //.
{AbS[Z-1°~ Abs[Z-1" > AbS[ZA®*P 9]} /. {m > 2, n - 2} // Simplify

True
I[z— p1] (2~ pn]
[z-oT[z=0on]
{F[a_.+ b _.Z] > e~z Absl AbS[ZaJ'bS_%] VaIs 1, k - pL+ Pm—01— o-n} //.
{Abs[Z2-1% Abs[Z2-1" > AbS[Z# 9} /. (m - 2, n > 2, gs, t] » 1} // Simplify

m— 1

e~ "F #ADSI Apg[AM (3] gfs, 1] ==

True

m+n 1

e~ ("Z-—PmAbsIt] Abs[z(m‘”) (s-?)-x] gls t] ==
Iz—-p1lT[z= pm]l T[1+ 01 = ZIT[1 4 0y — 2] Sin[x (z— ¢y)] Sin[x (z—cp)] /.

(Sinfzz_] > ————}/.
I'zZIr[l-2z

{F[a_.+ b _.Z] > e~z Absl AbS[ZaJ'bS_%] VoIs 1, k - pL+ Pm—01— o-n} //.
{Abs[ZA-1% Abs[Z2-1" > AbS[Z#P 9} /. (M - 2,1 5 2, p > 2, gls, t] - 73 // Simplify

True
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m 8§ 5. The Behaviour of the Gamma Functions[s+it] for |s| ==«

By iterated application of equation (15) results

Flz+Kk]l=+=R[z]R[z+ 1] - - -R[z+ k- 1] F[Z] 27)
and from this
. Flz]
Flz-k] __i(R[z—l] RiZ-2]- - -Riz—K] ) (28)

Flatten[SolvgF[z+ k] == +R[Z] R[z+ 1] R[z+ k= 1] F[Z] /. {z— z-k}, F[z-k]]] /. Rule » Equal //
First

Flz]

Fl-k+2] == +R[-k+2Z]R[-1+Z]R[1-k +Z]

Now the behaviour df [z + k] with increasing is to be determined in detail.

With the abbreviation

K=01+ -+ +0n—p1— -+ —Pm (29)
Correction of misprint:
KZ=p1 4+ Fpm =0 — -+ —0n
results from equation (16)
Log[R(Z]] == (m—- n) Log[Z] — Xy iz Pl[i].
z Z z
z-p1) (Z- pm)

1 1
PowerExpandLog| ( |/.{@z-a)= z(l— g)} == (m-n)Log[Z] - % + = Pl[;] /.

Z-01) @Z-0v)
{Log[1 + x_] :» EvaluatefNormal[Serie§Log[1 + x], {X, O, Z11], k » p1 + pm— 01— 0} /.

2 2 _ 2 2
o1+ 03 —p1—p3

1
m-2n-2P]-]> > } 1/ Simplify
z
True
Because of
1 K 1 1
KLOg[l—l— ;] == E + ;2' Pz[;]
1 K 1 1 1 K
Normal[Seriegx Log[1 + Y], {y, 0, 21 /. {y - ;} ==—t— Pz[;] /. {Pz[;] - _E}
True
is also valid

1 1
Log[R[Z]] == (m~-n) Log[Z] - x Log[1 + ;] * = P[;],
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whereP[x], P1[x], Po[x] stand for functions, that for sufficient smalcan be expanded into ordinary power series of
X. By replacingz by z+ 1 untoz + k — 1 results by addition of the developed equations

LoglR[zZ]R[z+ 1] - -R[z+ k—1]] =(m-n)Log[z(z+ 1) - - (z+ k- 1)]

k-1
k 1 1
_KLOg[l-I— E] + ZO: (Z+—V)2‘ P[m‘]

PowerExpanc{Log[R[z] Rlz+ 11 R[z+ k = 1]] ==

k
(m-n)Log[z(z+ 1) (z+k - 1)] -« Log[1+ —]] /.
Z
1
{Log[R[z_]] :» (m - n) Log[Z] — x Log[1 + ;]} /. k>3

Simplify // MapAll [Together, #] & // PowerExpand

True

From this follows:

RIZIR[z+1]- - -Riz+ k-1 = (z(z+ 1)- - -(z+ k= 1)™" (1+ ;)_ el (30)
and
Rlz-1]R[z-2]- - -Rz-Kl = (z- 1) (z-2)- - -(z- k)™ " (1 - E) e, (31)
with
1 1
ada= Z_(; (z+v)? [ Z+v J
k
A=) ——r =]
dilz] = EEI Py
v=1
k —K
[(z(z+ Dz+k-2)@z+k-1))™" (1+ —) [ {z-z- k}] ==
z
k K
(Z-1D)@Z-2(@Z-k+1)@z-kH™" (1— ;) [ k= 4}//
Simplify // MapAll [PowerExpand, 4 &
True
Because of the importance B{%] this size has got a regular behaviour forall - - -, py, 01, + - +, 0 andz not

being0 or —1. As soon as the absolute valuezok greater than the mentioned valuﬁﬁé] can be expanded into
positive powers oé. Therefore if the variableis confined to the half plariee[z] > a, with a standing for an arbitrary
real number, of which plane, if containing anylod tocations

Z=-v, pA—V, OV v=0,1,2,--),
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arbitrary small circles around these locationsaamitted, then results analogously to 8 2, tha#c[z]) | stays beneath a
finite limit being independent af andk. In a similar way behavag[z] according to the half pladee[z] < a. With
respect to the equations (27), (28), (30), (31¢bethe behaviour df [z + k] for k == £ o0 is given.

For the determination of series expansions of tgg@metric functions, which can be expressed byairert
integrals over gamma functions, the following réssiineeded, which can be found easily from thenfdae (30) and

If the variablez is confined to a straight linRgz] == a, whereon none of the sizes
(Riz+ k)™ k=0,1,2,--)
is equal to zero, then in the case> n is equally

Flz—k K
im 27Kk im X

k= F[Z] k=eo R[z—1]- - -R[z-K] =0 (32)

for each fixed value of. Withm == n this formula is valid forf x| < 1, and the formula

Flz+K]
im
k=co  F[Z]

XK == lim R(z)- - -Riz+k-1] xk=0 (33)

for | x| >1.

Gamma[z - k] .
— /. {k » 5} // FunctionExpand
Gammagz]

1
(-5+2(-4+2(-3+2(-2+2(-1+2

- Gamma[z-Kk]\™™" .
Limit [(———] X (
Gammag[z]

% /. {m->n+1}

kK
l——),k—)oo]
z

L (T\E"T ,
E(m-n) —co (E) Z*(Cogn k] + | Sin[z«])

0
X(1- %)
Limit [ k= oo]
(=D k!
0

K

k
Limit [x* (1— —) k= o]
V4
% /. {Log[x] » —1}
g SionlodXl] 7« (Cogn k] + | Sin[x «])

0
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k ¥

Limit [Log[x* (1+ —) ] k= o]
z

Exp[% /. {Log[x] - 1}]

—oo Log[X]

0

The casan < n does not need to be mentioned especially, bedaasgays can be reduced to the case n
by a proper substitution.

Glzl ==T[z-p1lT[z- p]T[1+ 01 - ZAT[1+ 02 -2ZT[1+0,-2] /. {z>1-Z

Gl1-2 ==T[1-z— p1]T[1 - z- pml T[z+ 011 T[2+ 0] Tz + 0]

m 8 6. The Connection between the Gamma and the Expemtial Function

If s stands for a point within a rectangle having tgesa + i w, b £ i w, that shall lie because of simplification
within the half plandke[z] > 0, whereorT'[z] behaves regularly everywhere, then is due toghtesce of Cauchy:

I[s] == ! 9§r—[z]—alz,

Z—S

where the integral is extended in positive direttiwer the boundary of the rectangle. Moreoverjrtegral is equal to
the sum of integrals being extended along eachefstdes. If nowa andb are constant, bub increasing without
limitation, where the sides being parallel to thalraxis withdraw to infinity, then the integralsimg extended along
these sides draw near the limit null because ofggu (11), while both of the other integrals atsmverge to finite
limits. With the assumptioa< b

1 a+i co Iz 1 b+i co Iz
I'[s] == - f l dz+ - f l dz, a<Rdzl<b (34)
270 Jaieo S—2 270 Jpieo Z—S

is also valid. During the integration of the firstegral isRe[s— z] > 0O, of the last iRRe[s— 7] < 0. Now depending on
the first or last case can be set:

1 ' z-1 1 ~ z-1
—_— == )é_ dX or —_— == )é_ ch
S—-2Z 0 Z—S 1

1
f XS—Z—l dx
0

1 1
If[Re[s— 2] >0, —, f X2 d x|
S—-Z 0

00
f 1 gx
1

1 00
If[Re[-s+ 2] >0, , f X2y
—-S+Z 1

If these integrals are introduced to equation (8%n follows
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1 dx a+i co = dx b+i co
[[s] == f X — f Tzl x*dz+ f X o— f Iz x*dz, (39)
0 2ni a—ico 1 2mi b

—i 0o

where is presupposed, that the exchange of thgratten order is allowed, which shall be shown i8 ®ith even more
general assupmtions. Beyond this by use of theab@ntioned rectangle results, that

+i 00 b+i co
f I'[Z] x‘zdz::f Izl x*dz (36)
a—i oo b—i oo

since the integral of[z] x?d z being extended over the border of the rectangdeyinull, because this expression
behaves within the rectangle and at its borderlagiyyu and the integrals being extended along itiessbeing infinitely
afar off disappear because of equation (11). Nomfequation (35) follows because of equation (36)

00 N dx a+1i oo ~ 00 1
I[s =:f XS f r[z]xzclz:f J[x a] X dx, (37)
0 a 0

2ni —i 0o

thus we are caused to examine the integral

J[X, a] = 271112 fa ml‘[z] xZ%dz (38)
a_

ico
The convergence area of this integral shall beroted more detailed in § 8. Here it is enoughriow, that because
of equation (11) it converges at least for all igaditivex.
[ls+it] X" [ {[z_] = e 7 't7 (V27 +¢))
Limit [%, t = oo]
E-7 oSy st (\/ 27 + e)
0
If we comparel[x, a] witha> 0to J[x, i n], wheren is a positive integer number, then by applicatién
Cauchy's sentence in the way given above resdtitimula
n-1

J[x, a] = Z % +J[x, 1 n|, (39)

!
= ! 2

because the residuumitfiz] X~ connected to the pole== —v is because dim,..o zI'[Z] == 1 and equation (6) equal to

lim (z+v)I[z] X %= lim (z+v)T[z+v]x*? _ ( (=x)” )
Z==—v 2=—v 2(2+1)---(z+v-1) o1

Limit [zGamma[z], z— 0]

1

ResidugGamma[z] x%, {z, -#}] & /@ RangqO0, 7]
X2

{1 « 3 X X X8 x7}
727 6’247 120° 720 5040
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G -z
(z+v) Gammaz+ v] X [ {z=>z-v} /. {v-> 3}

zz+ D (z+v-1)
Limit [%, z - 0]

x3Z2zGammdz]
(-3+2(-2+2(-1+2

X

6

By the substitutioz== % —n + it results

dt,

1 X% foo [ +it]xt

o (F+it=1) (3 +it—n)

from which follows

1 X% o 1
JIX, = —-n|< f = +it]||dt.
[ 2 2(3+D--(3+n-1) _m(’ [2 ]D
The integral on the right hand side of equation) {B@refore reaches with increasinghe result null, thug[x, a] is
equal toe™.

1 Gamma[% +it]
Gamma[— - n+it] == /. {n = 2} // FullSimplify
2 (3 +it=1)(5 +it—n)

True

LX,F[E —n+it] X d .

r[% +it]

i
J[X, a] ==
2nwi

1 1
{aaz—n,r[a—n+it]:->

(%+it—1)(%+tft—n)

b b )
% /. {Integrate - Dummy} //. {Equal - Less, ————— » —, x™**%:5 x2} / {Dummy - Integrate}
(it+a) a

1 © 1
Limit [Evaluate]Last[%] /. {(E - n) - n!, f r[E +1t]dt > M}], n > o]

o0 X—%+n—|[r[1+|t]
f BAIY Aa LN 1
o (=z+It)(z-n+lt)

1
JIX, = —n|==
[x 5 -1l 2

1 00

1 Xzt (TT[E +1t]dt
J[x,——n]<— f_;" 2

2 (E —n)ﬂ'
0

(=x)” g

v!

v=0
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If in the equations (37) and (38) is sHi, a] == 7, then it has turned out as final restiftat between the
gamma and the exponential function exists the rkaide reciprocity:

e X== L a+x'OOI“[Z] x*dz, -5 <Arg[x]< 3, a>0;

(7 Eieeie (40)
[z = [ e*x*dx, Rez] > 0.

From 8§ 8 will result, that the first integral comges for all values ofx fulfilling the condition
—12’- < Arg[x] < +-’é'-.

Already in the year 1894 the transformations aboweye the starting point of my elaboratiddn the
fundamental importance of the sentence of Cauchthéotheories of the gamma and the hypergeom#itrictions),
where, as far as | know, they have been used dirshéme.

*) Uber die fundamentale Wichtigkeit des Satzes vonckBa fiir die Theorien der Gamma- und der
hypergeometrischen FunktioneActa Societatis Scientiarum Fennicae. Tom. 2061&ubmitted to the society on
Nov. 19th, 1894.

m 8 7. The Preceding Method is Applicable to More Geaaral Gamma Functions

The method used in the previous section, wheredbiprocal formulae (40) have been found, obvioisigot
limited toI'[z] only. At the derivation of formula (37), whedéx, a] is defined by equation (38), indeed has been made
use of the circumstance only, that a stripe beiaglfel to the imaginary axis can be assumed, wigzg behaves
regularly and reaches the limit null by increasirtg according to the formula

Tls+it]| =e 2" (|t)* 2 |V2r +e.

But at the following discussion expressing thednadJ[X, a] by the exponential function, the functional eqomatof
I'[Z] has been used to determine the series expansidmi,od].

If we now consider e.g. the expressions of § 4

Glzl, H(z, G[z] Sinx (z—cy)]- - -Sin[r(z-cp)], (41)

by taking withinH [z] m > n and within the last expressign< m;” , then we find, that the absolute value each cfeghe

functions because of the equations (23), (24), ¢€aB)be brought to the form

e f[s, t],

whered stands for a positive constant, whilgs, t] can grow at the most like a finite powertofif s stays between
finite borders. A stripe being parallel to the inmagy axis obviously can be assumed, indeed in meays, that the
above given expressions behave regularly thereHfek there is even a half plane of this kind.

Now this elucidates, that the method of the previsection can be applied to the above given funst{@1l),
which we want to namg[z], thus we yield instead of the formulae (40) thofeing more general ones:

Flz] = f oo(l)[x] XL dx, (42)
0

1

a+i co
P[X] = —— f Flzlx2dz (43)
2mi a—i oo
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By the first formula obviously a considerable amoahintegrals is reduced to the gamma functionpoag
which Euler's integral of second kind is the sinsplpecial case.

The importance of the last formula (43) for ourdiyemeanwhile is even much greater than the ortheofirst.
Indeed it will turn outthat the functiong[x], yielded by equation (43) from the gamma functianshypergeometric
functions.

Before we switch to this proof, we want to devetbp law of reciprocitybeing expressed by the above given
formulae, in its full generality. That indeed itntent be limited to gamma functions only, alreadgvglent by the fact,
that the last formula is valid without use of thedtional equation df[Z].

m 8 8. Two General Integral Classes and their Reciprity Law

Further on we understani]s, t] to be a positive variable, which after multiplioat by e~ equally reaches
null with infinitely increasing| t|, if s stays between certain borders, that have to lengiv detail in each case. Here
and further ong is understood to be an arbitrary small, positivestant.

Sentence (I.)F[z] be an analytic function af == s + Zt, which behaves regularly near each finite location
within and at the border of a certain parallel gtei being defined by

a=<s=<p, a < B, (44)
and which within equation (44) reaches null witbreasing| t | accrding to the formula
|Fl2l| = f[s 1], (45)

whered stands for a certain positive constant, whils, f] has got the above given meaning o s < #. Then the
integral

J[X, a] =

a+i oo
f Flzl x*dz a<a<p (46)
a

2ni —i oo

converges equally in each areaof= | x| #° 7, defined by the inequalities

1
_(#-26)<0=<+(-26), e's‘x’ s(—,) (47)
€
and also fulfills the fundamental inequatlity
| J[x, al| <Cla, €] |x]™?, (48)

for eachx fulfilling the first condition (47), wher€ is a size being independenbofnde’.

To prove this sentence== a+ it is assumed. Then because of the relations (45}4ahd

|F[ZIx?] < [ x[e 2" f[a, t],
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Abs[F[z]]1 X2 /. {z> a+ i Abs[t], x » Abs[x] &’ ?~29}
% /. {Abs[F[s_+it ]] :» Exp[-¢ Abs[t]] f[s, t]} // PowerExpand// ExpandAll
% == E~2¢Asl Aps[x] ™ f[a, Abs[t]] /. {Complex0, ] : 0}

(! (2eva)) N ADS pp qmant ADSI Ab G ETa 4+ | AbS[L]]

E2!ac-lad-2¢Abdtl Apgy =2 At £ 15 Apgt]]
True

wheref is independent of. Thus within the series

V=400

1 +i (v+1)
Z Flzl x*dz==J[X, a] (49)

2ri a+iv

V=-00

the absolute values of each serial member are eqleds than

V=400

v+1 00
Z(|x|)—af el f[a, t]dt:=(|x|)‘af e~ . e~ f[a, t] dt,

V=-00

which because of the mentioned properties dfas got a finite value being independenkpéxcept for| x [~3. From
this elucidates the availability of the sentence.

Because each member of the in relation (47) equaltyerging series (49) is a monogene functior, @&lso the
integral J[x, a] in relation (47) is a monogene, everywhere thegularly behaving function ok. We name this
function®[x].

If Cauchy's integral sentence is applied due to, §hé resut is, thal[x, a] for all a fulfilling a<a=<p
represents one and the same funcixi.

If the width 8 — @ of the stripe (44) is finite, the@ obviously can be understood to be a constant being
dependent of only.

From relation (48) results, i& is any number fulfiling the conditiomw <a=< g and 8-« is finite, that
| x2®[x] | for all x within relation (47) stays beneath a finite limit:

| x2o[x]| <K, a<a<p. (50)

Sentence (II.)Now from this results in the known way, that thedgnal
f ®[x] Xt d x (51)
0

converges for each value==u + 7 v being located within the stripe < a < 4. Now we claim, that this integral is
equal to our original functiof [s].

For the first we remark, that the integral or thdes respectively

1 a+i co F[Z] 1 V=+o00 a+i (v+1) F[Z]
Ji[x, a] == ——X%dz= —— X2dz,
1l al 2ni fa_m Z-S 2ni VZ faﬂ;y Z-S (52)

=—00
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with Re[s] # a, obviously within relation (47) converges equallythe same reason as the series (49). Thus §&2ps

is allowed to be differentiated at each member.aBse each member is an integral between regulatetsrit is
allowed to practise the differentiation under thiegral sign. By this results:

d
= Jlx, al| = -x*1J[x, al.

Abs[F[Z]]

X572 /. {z - a+i Abs[t], x » Abs[x] &' ?~29}
z-s

1
% /. { — , Abs[F[s_+it ]]:» Exp[-& Abs[t]] f[s, t]} // PowerExpand// Simplify
a—s+i__ a-s

% /. {CompleXO0, ] :» 0}

(EI (_25+&))—a+s—l Abs[t] Abs[x]—a+s—l Abs[t] Abs[F[a+ | AbS[t]]]
a—s+ | Abgt]

E! @9 (2e-0)-2¢Abslt] Abs[x]_a+5"' Abst] f[a, Abgt]]
a-s

E-2¢Absitl Ahg x| 73S f[a, Abgt]]
a-s

Flz N
ax(— xs‘z) == —x*1F[z] x2// Simplify
z-s

True

Because ofr < Re[s] < BisJ1[0, @] == 0 andJ;[oco, B] == 0 and thus

1 1 @+i 00 Flz
f J[X, a] Xs_ldX:: _Jl[ll a] =" f [ ] d21
0 (0%

270 Jo—ico Z—S

00 .1 1 [+i co F[Z]
f JIX Bl X dx=3[1, B] = - f —dz

1 2ni p-ico L—S

After these preparations the proof of the abovemiglaim has the following shape:
f O[X] XL dx = f J[x, a] Xt dx
0 0
1 00
= f J[x, a] ﬁldx+f JIx, a] Xt dx
0 1

1 00
::fJ[X,a]Xs_ldX+f JIx, B tdx
0

1

1 fv+ioo F[Z] 1 S+i 0o F[Z]
=— —dz+ —— f —= a4z
276 Jysieo Z—S 2mi Jg z-s

—i co

The last expression is equal to the integral, ihaixtended in positive direction over the bordershe stripe

. ——'dzl
2ni Z-5S

which is equal td-[s].
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Thus between both the functidhiz] and @[x] consists the reciprocity

{ N = 77 [LUFAX Az 0 <ArgiX < +0, @ <2< 53
Flz] = f0°°<1>[x] xz1dx, a <Rez] < B. >

Thus for each functioR [Z] having the properties of sentence (l.) the invéosmula is valid

| weq ax qavioe . @<Rds|<p,
F[s] -‘fo X mfa_ioo Fldx?dz, a=za<p. (54)
However, our examination still needs an essentiaipietion. Until nowF [Z] has been an independently defined
function, while®[x] has been generated by useF¢f]. Now we want to start by an independently defifigattion
Pd[x].

Sentence (I'.) #[x] be a monogene function, which behaves regulartitinviand at the border of the area
being defined by

—d=<0=<+¢ (55)

with x ==| x| #‘?, where the locationsx ==0 and X == co are eventually excluded. Further be assumed, that
| X2 @[x] | with a being an arbitrary number fulfillingr = a < £ stays beneath a finite limit for all in relation (55).
Then the integral

Flz] = f O[x] X Ldx (56)
0
converges equally within the stripe
a+e<Rdzl<fB-¢€ (57)
and reaches the limit null by increasing| ==|s+ Zt| according to the formula
|F[Z]| =& *1 f[s, 1], (58)

wheref ande have got their properties given ealier.

The convergence of the integral is shown in thenknavay. The integral along the straight lile—R, the arc
R—R ¢**? and the straight linR ¢**¢ —0
95 O[x] XL d x

gives null due to the sentence of Cauchy. Becatidenab[x] x? == 0 for X == 00, @ < a < B the part of the integral
along the arc reaches null by increadtigrhus forR == o0 and by the substitutions== e*:? r results

FlZ] = ¢'’? fooo@[ew )17 dr, Flz] = e 2 fODOCD[e_M 117 tdr,

and from this

. 1 * Ple~t? 7] — B[’ 7] 71
Flz] = Sin[&z]ﬁ T ™ dT. (59)
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OX] X 1x /. (x> #H & /e {e’ T, e 1} // PowerExpand
F[Z] Flz] Last[#] First[#] o
( - ] == ( - ) & [%] // FullSimplify

e—idz eidz e—wz ewz
Last[%] ®le i 1] - P[et? 1]
2iSin[éz] 2i Sin[¢ 7]

{El z4 TZ (I)[El & T], E—l z4 TZ(I)[E_I ¢ T]}
21 F[Z] Sin[zd] == 2 (®[E™"? 7] - ®[E'? 1])
True

Becauser is a real positive variable, the absolute valu¢hefintegral on the right hand side stays withreéasing | t |
beneath a finite limit, thu$ F[z] | indeed can be brought to the form (58).

1 f‘” ®le i 1] - P[et? 1]
0

. Zrdr [ {z> s+it}
Sin[¢ 7] 2i

Limit [Evaluate]% /. {fwa_ch > K, 8- 1], t > o]
0
—% | Csd(s+1t)0] fwr-1+s+“ @E™"" 7] - @[E'’ 1] d T
0

0

Sentence (lI'.) Thus according to sentence (l) the integral

I al = = [T UFldx?dz a<a<p (60)

2ni Ja—ico

converges for allk fulfilling the condition—¢ < ¢ < +¢. Now we claim, that this integral is equal to aaniginal
function @[x].

With the substitution in the formula

1 a+i o 0o
J[x, a] == —— f x‘Zalzf o[t t L dt:
2ni a—ioo 0

. ) +
X==e"Y, z== a+ﬂ+lzLog[y], t=¢", a="2 ﬂ,
2 2
results
iu B ju © 1 dy e iwy S iw  ~w
J[e'Y, ale 2 Y= e - OV e T Wy Wdw. (61)
0 270 Joio
z-1 1 iwy 2w ~w iw s iw a+p .
Pt t7 dt == —— @[’V ez Wy Vdw/ {dt > &Vidw, t > e,z +iLoglyl} //
L

PowerExpand// ExpandAll // Simplify

True
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1 oa , id a+
— x*dz==- Zl y. /. {x e, dz-» y, zZ- £ +17Log[y]} // PowerExpand//
2n eFiu 2mi y 2

ExpandAll // Simplify
True

Because of the assumptions @the expressiod[e! "] e% iW is regular within the stripe @ < Re[w] < +¢ with the
absolue value being less thine=" 1. Thus for this expression the inversion formuld)(s valid, so that the right
ﬂ

hand side of equation (61) must be equa®fe’']ez ‘Y for —¢ < Re[u] < +¢ and by thisJ[x, a] == ®[x] for
—d < Arg[x] < +¢.

Thus between both the functiodpx] andF[z] consists the reciprocity:

Flzl = [ ®[x]x*1dXx, a<RdZ] < B;
{ 1 a+i co _ (62)
O[X] = 517 [ “FlZx2dx, -9 <Arg[x] <+d, a<a<§p.
Correction of misprint:
FI2 = [ @IX] x* & X, @ <Rd7 < 4,
OX] = 5 [CFAxTdz, -8 <AgIX] < +4, @ <a< p.
Thus for each functio® having the properties of sentence (I'.) the ingdosmula is valid
1 a+i oo _z 0o 21 a<a<ﬁ,
Oft] = 57 [ "t2dz [TO[x] XL dX, (63)

—-d¢ < Arg[t] < +¢.

If we name by(F) or by (®) respectively the whole of all functions having {m®perties of sentence (l.) or
sentence (I'.) respectively, then due to the ektimr above the functions of both classes corresfoneach other
unequivocally in the following way. Each functiof the class(®) is transformed by the first formula (62) into a
function of the claséF), and also vice versa each function of the ci&9ds transformed by the last formula (62) into a
function of the clasg®). If ® is changed intd- by the first formula and thels by the last one int@,, then always is
®,[x] == ®[x]. If F is transformed by the last one indband then® by the first one intd-,, then also always is
F1[Z] == F[z]. Two functions being coupled to each other by thigprocity law suitably can be callececiprocal or
conjugatedunctions. The gamma and the exponential funaimeording to § 6 are two such reciprocal functions.

An immediate consequence of this reciprocity lavthis following sentence being important when irgigg
hypergeometric differential equations:

One of two reciprocal functions can be identicahtdl just if also the other one is equal to zerdyo

The general results of this section also alreadyiom my above (§ 6) mentioned elaboration (§&hd 29),
where as far as | know they have been developethéofirst time. Have also a look at § 7 of my elation*) in the
Acta Mathematica vol. 25. | have also shown*) soyears ago, that these results can be transfenegletely to
corresponding functions of several variables.

The above given formulae certainly are connectelotarier's integral formula, which however | do m@&nt to
show in detail on this occasion.

*) Uber den Zusammenhang zwischen den linearenemiftial- und Differenzengleichungen (On the
Connection between the Linear Differential and &ihce Equations).
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**) Zur Theorie zweier allgemeiner Klassen bestiramintegrale (On the Theory of two General Classfes
Definite Integrals). Acta Soc. Sc. Fennicae, Tog.1B96.

m 8 9. Examples of Conjugated Functions
We want to present only the following of the nuniéss possible examples of such functions.

First Example. Because of simplification we assume, tRefs] > 0 and build up the integral

- < Arg[X] < +,

J[X, a] = == fa+i°°r[z] I[s-2Z x?%dz

2mi Jacioo O<a<Rds].
Similar to § 6 results
! Is+v]
Jix a Z — (-x"+J[x,a-nl, O<a<Ll.
=0 Vi

Plusee (ResidugGamma[z] Gamma[s— Z] x %, {z, —#}] & /@ RangqO0, 4])

1 1 1
Gammds] — xGammdl + s] + > x> Gamma2 + s] — 5 x> Gamma3 + s] + > x* Gamma4 + s

If we assume| x| < 1, then we yield by the sentence at the end of IgnaJ[x, a—n] =0 for n=co0. Thus is
J[x, a]l =T[s] (1 + x)~° and this equality indeed consists because of thmlized convergence af[x, a] not for

| x] < 1only, but also fo~n < Arg[x] < +m, i.e. for the wholex-plane, except for the negative half of the reas.ax
Thus because of the preceding section one gets

L
{ O<a<R¢gs]; (64)
T[ATs- 2 =TI8) [~ 25 dx 0<ReZ] <Rds].

Gamma[s+ v] . . L
——— == Gammgd[s] Binomial[s+ v — 1, v] // FullSimplify
Gamma[v + 1]

True
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Gamma[9]

N
R — Gamma[s] Z Binomial[s+ v — 1, v] (=x)” // ExpandAll // FullSimplify
+ X

v=0

1
0 == Limit [Evaluate[% /. {x - E} // Simplify], N - oo]

(=N Gammdl + N + s] Hypergeometric2F1Regularizdd 1+ N +s, 2+ N, —x]

1
Series::esss Essential singularity encountered in Ganﬁlﬁa+ 1+s+ O[N]3].

1
Series::esss Essential singularity encountered in Ganﬁlﬁa+ 1+s+ O[N]3].

1+N
1
0== Limit[(—E) Gammal + N + s] Hypergeometric2F 1Regularifdd 1+ N +s, 2+ N, _E]’ N - o]

Xz—l

Gamma[z] Gamma[s — z] == Gamma[s] foo dx /. {If[a_,b_, 1= (Print[a]; b}
0

X+ 1)°
Rds-7] >0&&Re[z] >0

True
The last integral changes as everybody knows ltalde substitution into Euler's integral of fikéhd.

Second Examplelf we consider the functio®[x] being defined by the integral

ioco a> qul]
N = 77 [ Tz=pal Tz pal X Pdz o (65)

for - < Arg[x] < +x, then results in the way described above the gteagverging expansion

00

< Tlp1—p2 - Tlp2 - p1-
B[] = X_plz [p1—p2 -Vl (= +X_pzz [p2 —p1-VI (=%, (66)

| |
7=0 v 7=0 v

Plusee@ (ResidugGamma[z — p1] Gamma[z — p2] X%, {z, p1 - #}] & /@ RangdO0, 4)) // Simplify

1
> x P (x* Gamma—4 + pl — p2] - 4 ¢ Gammé—3 + pl — p2] —

3x2 Gammég-2 + pl — p2] + 6XxGamm4—1 + p1 — p2] — 6 Gammépl — p2]))
Plusee (ResidugGamma[z — p1] Gamma[z — p2] X%, {z, p2 — #}] & /@ RangdO0, 4)) // Simplify

1
> X2 (x* Gamma-4 — pl + p2] - 4 ¢ Gammé—3 — p1 + p2] —

3x% Gammé-2 - pl + p2] + 6 XxGammé—1 — p1 + p2] — 6 Gammé—p1l + p2]))
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[ o

G —pa- G —p1-
x"’lz ammalp, — p, —v] (—x)V+x“’ZZ amma[p, — p; —v] (=)

v! y!
v=0 v=0

% // FullSimplify

Gamma[z - p1] Gamma[z - p,] == foo% xZtdx /. {If[a_, b_, ]: (Print[a]; b)}
0

ﬂX‘pTl_%z_ Bessel[—pl + 02, 2\/_)?] Csdrn(p1— p2)] + 7rx_ﬁ21"pTZ Bessel[pl - P2, 2\/_)?] Csdn (—p1 + p2)]

2 xz (-P1=p2) Besselkp; — p2, 2V x|
Re[z— p1]> 0

True

whereof elucidates, tha is closely related to the cylinder and the Bedsettions. If p; — p, is an integer number,
then the expansion has datg[x] terms. Although the steady converging series esiparmust be considered to be a
more complete expression @fthan the integral, so this one has got an essemtisantage instead of that one, if the
behaviour of® for infinite largex is dealt with. From the fundamental inequality J(A8herea can be assumed in this
case to be arbitrary large, indeed equally follows

lim XK ®[x] == 0

for x == 00, =+ € < Arg[X] < +x — ¢, independently how largke may be. This remarkable property cannot be seen
from the series expansion at all.

In the case1 == p, == 0 results fora > O:

! fa”ml"zzx‘zdz——zi—rl[wu X — Log[x Z"’: X
277 Joies 2 N Ty +1 ()2 aIx]- o2 |

v=

Plus@e (ResidugGamma[z]® x %, {z, -#}] & /@ Rangq0, 4])

1
-2 EulerGamma Log[X] — 7 X2 (-3 + 2 EulerGamma- Log[x]) — X (-2 + 2 EulerGamma: Log[x]) —

1 & (—11+ 6 EulerGamma 3 Logix]) x* (=25+ 12 EulerGamma: 6 Log[x])
108 : 3456
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ad, Gamma[v + 1]

o

2 Z PolyGammdO, v + 1]

v=0

(o] XV
% — Log[x] Z
v=0 vh?

2x7 P1=p2) Bessel{p1 - p, 2vVx |==% /.{p1>0,p> > 0}

XV

12

Gammdl + v] PolyGammg0, 1+ v]
2 Besself0, 2v/x | + Bessel|0, 2v/x | Log[x]
2 Bessel{0, 2v/x |

True
Gamma[z)® == f mz Bessel§0, 2Vx | x> dx /. {if [a_, b_, 1 (Print[al; b)}
0

True

Third Example. For the integral

a+i oo _
J[x, a] = ! . f lo -2 Izl x*dz _I < Arg[x] < +£, (67)
270 Jaieo Ilp—17] 2 2

which we want to consider under the assumpiliena < o, results on the one hand the steady convergingpseries

N o +v] (=X
JIx al = ; Tlp+v] ! (68)
G —
Pluse@ (Residue[Gamm;:ZZ; Gamma[z] x%, {z, —#}] & /@ Rangd0, 4]]
ammalp — Z

Gammgo] xGammal + o] .\ X Gamm@2+ o] X2 Gammé3 + o] . x* Gammé4 + o]
Gamméyp] Gammdl + p] 2 Gamm§2 + p] 6 Gammé3 + p] 24 Gamm$ + p]

Z”: Gamma[o +v] (=X)”
— Gamma[p +v] !
Gammao - 7]

Gamma[z] == foo% xZrdx /. {If[a_, b_, ]: (Print[a]; b)}
Gamma[p - 7] 0

Gamméo| HypergeometriclHtr, p, —X]
Gammép]

Rez] >0

True

and on the other hand theymptotiqresentation
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n-1 -y
J[x, a] == x‘“z flotv (=% +J[X, a+n], oc-1l<a<o, (69)
= IMp-oc-v] v!

Gamma[o — 7]

Pluse@ [Residue{ S Gamma[z] x %, {z, o + #}] & /@ Rangd0, 4]] // Simplify

ammalp - 7]
24x® Gammdl+o]  12x2 Gamm@2+co] 4xGammg3+o]  Gammgd+o]
1 Va4 24 Gammw] + Gamma-1+p-o] Gammg-2+p—o] Gammag-3+p—0c] Gammég—4+p-o]
24 Gammdp — o] x4

~ Z”: Gammalo +v] (=X
X o

Gamma[p — o —v] v!
v=0

Sum::div: Sum does not converge.

(e

- Z Gammgo + v] (—X)~

Gammgp — o —v]v!

v=0
which shows, how [x, a] behaves for large belonging to the area
X +e<Arg[x] < X
E €= g[ ] = E €.
By use of the fundamental inequality (48) namelg finds for the rest member the inequality
|J[x, a+n]| <C[a+n,e|x|&". (70)

From the series (68) the property being expressethd equations (69) and (70) cannot be seen aBwlluse of
equation (69) can be proved, tl4Kk, a] has got a finite number of zeros at the most withe discussed area.

m 8 10. Proof to a Sentence of Pincherle

Due to Mr.Goursat*) we understand hypergeometric differential equatiaa be each equation of the form
(@+boX) Y+ @ +bi X)X Y + - - +(@m + b x) XM y™ = 0. (71)
Each solution of such an equation we cdllypergeometric function

Now we claim, that the integral

1
= Flz] x*d
y ori fL 4 z, (72)
whereF[Z] is a gamma function due to § 3, under certainmaptiaons fulfills an equation of the form (71).

Before we go to the proof of this sentence, whighaispecial case of a yet more general sentenddr.of
Pincherle**), we want to give the linek in more detail, along which the integration i9s®done preferably.

If F[Z] is such a gamma function, which with increas|nd reaches zero according to the formula

|Fls+it]| = e f[s, t],
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where f andd have got the meaning given in § 8, then the i@ttign path can be an infinite straight lite@+ i co)
being vertical to the real axis, which does nottlygmugh a pole of[z]. Thus the integral converges within the area
given in 8 8, sentence (l.).

However, it is indispensable to use also othemgiatiion paths. By—oo) we want to understand the broken line,
consisting of three straight lines,

—oo+ia)2 <—————————— a+ia)2
| (73)
—00 + LWy > ——————————— a+iwy
and by(+ o) the broken line:
atiw; —mm———————— < 0o + 1wy
I (74)
a+iwg ———————————— > ocot+iwg

The sizesa, w1, wy, Which give the location af- o) and(+o0), can be set to what is needed. Neittieso) nor (+oo)
are allowed to go through a poleFefz].

By use of the sentence at the end of § 5 now esilylts the following:

If m> n, then equation (72) converges equally along a (#e) within the area ok being defined by the
inequalitiese < | x| < (%) with e being an arbitrary small positive size.

If m==n, then the integral (72) converges equally witthia &rea being defined ley< | x| <1 -, if it goes
along a ling—o0), and also within the area being definedsbgl| % | < 1-—¢, if it goes along a liné+co).

The casen < n always can be reduced to the case n by suitable substitutions.

If L in equation (72) stands for a lif@+ i co) Or (—oo0) Or (+00) due to the circumstances, then we want to
show, that equation (72) within its convergenceaiges a hypergeometric function.

For the first we compare the integral (72) to thiéofving one
1 -z-1
Yy == —zﬂ.ﬂ LF[Z-I— 1]X cﬂZ, (75)

which can be yielded from the first one by a tratish of the integration path— z+ 1 being parallel to the real axis,
then is due to the sentence of Cauchy

y == y+ S' (76)

whereS gives the sum of the residuaefz] x=%, that belong to the poles &f being passed by the translation. If no
pole is passed by, thenS is equal to zero.

Now with the abbreviations

flzl =ag-—ayyz+azZ+D+ - -+(-D"anz(z+ 1) - - (z+ m-1), 77
0z =by-b1Z+D)+bZ+ D (Z+2+ - - +(=D)" by (z+ 1)- - - (z+ M), (78)

results by use of the equations (72), (75) and: (76)
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1
aoy+a1xy'+---+amxm>/m>==—.ff[Z]F[Z]X‘chz.
2nwi J.

1
X(bpy+bi Xy + - - - +bp XM yM) = fg[z] Flz+ 1] x%dz
2ni J.
—x(bpS+by XS + - - -+ X" S™).

1
ao YIX1 + a1 X Y'[X] + am X™ y™[x] = Py ff[z] FlZx*dz/.
1
{y - Function[x, — fF [2x7%dz]} /. {m > 2} /.
2ri
{fa_dz:—» a} /. {f[2 » a — a1 2+ & z(z+ 1)} // Simplify

True

1
X (b YIX] + by X y'[X] + by x™ Y™ [x]) == P fg[z] Flz+ 1] x%dz

nr

— X (bg S[X] + by X S'[X] + b X™ S™[x]) /.

_ fF [z+ 1 x> dz-S[X]]} /. {m > 2} /. {fa_dz = a} /.
e
{dlz] » bg—by(z+ 1)+ by (z+ 1) (z+ 2)} // Simplify

{y - Function[x,

True
If F[Z] finally stands for a gamma function fulfilling tlegjuation
flz] Fl[z] + 9lz] F[z+ 1] == 0, (79)
then we get for the function (72) the differenggluation

@0+ Do X) Y+ (@ +br X)X Y + + - - +(@m + by ¥) X Y™

80
=-X(bpS+b; XS+ - - - +byy X" S™). (80)

1
ag YIX1 + &g X y'[X] + am X" Y™ [x] - P ff[z] Fldx2dz+
e

1
X (b YIX] + by X y'[X] + by x™ Y™ [x]) — (2—— fg[z] Flz+ 1] x?dz

e

— X (g S[X] + b1 X S'[X] + by X™ S(m)[x])) ==

(@ + b X) YIX] + (a1 + by X) X Y'[X] + (@m + by X) x™ Y™ [x]
— (=X (b S[X] + by X S'[X] + by X™ S™[x]) /. {F[2] - _fi[[?]- Flz+ 11} // Simplify
z
True

The right hand side of this equation can be brotmkite form
2, X" RilLogix]] 81)

whereR give entire rational functions, while tleare real or complex numbers. The residu# [l x~* namely have
got the formx* R[Log[X]].
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ResidugGamma[z] Gamma[z + 1] Gamma[z + 2] Gamma[z + 3] X%, {z, —#}] & /@ Rangd_0, 3]
{2, x(~2+ 4 EulerGamma: Log[X)),

1
~>a x? (51— 120 EulerGamma 96 EulerGamnra+ 472 + 6 (-5 + 8 EulerGammpLog[x] + 6 Log[x]?),

1
3888 (¢ (6929— 14508 EulerGamma 11232 EulerGamnfa- 3456 EulerGamnia+ 46872 —

432 EulerGamma® — 9 (403- 624 EulerGamma 288 EulerGamnfa+ 1272) Log[x] —
54(-13+ 12 EulerGammeLog[x]? — 54 Log x]® + 54 PolyGammi®, 1] +
54 PolyGammi, 2| + 54 PolyGammg, 3] + 54 PolyGammi2, 4]))}

If the integration path. has got such a location, that the partlobeing parallel to the imaginary axis does no
pass any pole of[z] by the translatiore - z + 1, then the differential equation becomes homogeneme to the
above given statements.

If a hypergeometric function is understood, whishsuitable, to be any solution of a homogeneousocor
homogeneous equation of the form (80), where thiet thand side can be brought to the form (81), ithénto note,
that this definitiononly seeminglys more general than the former ofide right hand side (81) namely always can be
annihilated by alternating multiplication by poweséx and differentiations, where the left hand sideeied changes
its order, but not its form.

*) Annales de I'Ecole Normale, Sér. Il. T. 12. 1883

**) Sopra una trasformazione delle equazioni ddfeziali lineari in equazioni lineari alle differemze
viceversa. Rendiconti del R. Istituto Lombardo,i&ét, vol. 19, fasc. 12-343. 1886. Sulle funzioni ipergeometriche
generalizzate. Rend. d. Accad. dei Lincei. Vofadc. 12, 13, S. 792799. 1888.

m 8 11. Each Hypergeometric Differential Equation carbe Integrated
Completely by Use of Gamma Functions

According to the previous section the integral (@Ryays gives a hypergeometric function, witfz] being an
arbitrary gamma function and being a line(a+ i o) or (—o0) or (+o0) due to the circumstances. Now the further
guestion is, whether vice versa also each suchibmcan be presented by equation (72).

Because of the remarks at the end of the previeados we can confine thomogeneousypergeometric
equations. Now the following can be shown.

There be
(@+bpX) Y+ @ +bX)XY' + - - - +(@n+bmX) X" y™ =0 (82)

the differential equation to be integrated. Byrape substitution always is possible, that and theast b, of the sites
b, by, - - -, by, that are not equal to zero, both are equal tobeurane. Now is to be build up

PIAX] X

],X—)—}/.

A

(a0 + b X) YIX] + (@ + by X) X y'[X] + (@m + bm X) X™ Y™[x] /. {y - Function[{x},

{m - 3} // PowerExpand// ExpandAll

pxlao  xpixIbo xa pIX X% by p[X] .\ x3 ag pP[x] .\ x* by pP[x]
B AB B AB B AB
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SO'Vd{b3 == AB, ag == B}, {A, B}]

(A~ 2 8- a)

flzl==ag—a1z+az(z+ )+ - - -+(-D"a,z(z+ 1)- - - (z+ m-1), (83)
Correction of misprint:

flzl =g —ayz+a,z@Z+1) + ---+(-D"apz(z+1)---(z+m=1),

glzl==bg—by (z+1) + by (z+ 1) (z+2)+ - - - +(=1)"bp (z+1)- - - (z+ ), (84)
and to be set
f[z1 = (=)™ (2~ p1) (Z~ p2)- - - (2~ pm), (85)
[zl = (-1)"(z- 1) (2= 02)- - - (Z— o), (86)
Glz]=T[z- p1]- - -T[z- pm] T[1+ 01— 2] - -T[1+ 0 — 2, (87)
P[z] = SinN[n (z-¢1)]- - - Sin[ (z— cy)] i S ﬂ(z ol (88)

whereC stands for an undefined, bafor defined constants, among them no pair is fowttbse difference is equal to
an integer number.

Thus thegeneral integrabf equation (82) can be presented in the form

1
y=-— f Glz] P[z] x *d z+ R[x, Log[x]], (89)
L

2ni

wherelL stands for a line being suitably choosen am@ngj i co) or (—oo0) or (+00), while R stands for a finite sum of
the form (81).
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(@g + by ) YIX] + (a1 + by X) X Y'[X] + (@m + by X) X™ Y™ [x] == 0/.

1
{y - Function[x, Py f GlZl Pz x™*dz]} /. {m - 2}
Ty

% /. {a__xt— fb_dz:—» afb X d z
% /. {d_(fc_dz) (@ +b_x)=»d afcdz+d bevaIuate[xc/. {z>z+1)1d2)

% /. {fa_dz > a} /. {ag > 1, b, > 1} // Simplify

% [ {ao+z(1+z-a)) » (D" (Z-p1) @Z-pm). bo+ 1+ 2+2-by) » (-D" (@2Z-01) (- 0)}
% /. {G[z_] :» Gamma[z — p;] Gamma[z— p,,] Gamma[l + oy — Z] Gamma[l + o, — 2]} // FullSimplify
% /. {P[z+ 1] » (D)™™ P[Z]} /. {m - 2, n > 2}

| (/x2G[2] P[] d?2) (o + X bp)
- 2 "
IX([x¥ 2242 P[Zd?) (a1 +xb) 1X2([x*?(-1-22FZ P[4 d2) (az + Xb)
+ =
2r 2r

=0

B ([x2G[z] P[2 d 2) (ag + X by) .
2r
| ([x?24ZPlzld2) (s +xb) 1 ([x?(-1-22FZ P[Zd2) (ay + Xbp)
+
2n 2n

B | (/x*GlZ] Pzl d2)ag . | ([x?zdzP[Zld2) &y N
2n 2n
| ([x?(-1-2zdZPlZld2a; | ([x?G[1+2ZP[1+2Zd2)by .
2 2n
| ([x?(1+2G[1+ZP[1+2Zd2)b . | ([x?(-2-2(1+2G[1+ZP[1+2Zd2)b,
2n 2n

| X2(G[Z] P[Z] (ag+Z(1+z—&)) + G[1+Z]P[1+ Z] (o + (1 +2) (2+ 2~ by)))

=0
2n

X DH™G[Z] P[Z] (z- p1) (z— pm) + (-D)" G[1 + Z] P[1 + 7] (z— 071) (z— o)) _
2n

=0

1
~5- (I x*Gamméal + z— p;] Gammédl + z— pp]

Gamm4l — z+ o1] Gammal — z+ o] (D)™ P[z] + (D" P[1 + 2])) ==

True

Plz+1] == -P[Z] /. {P[z_] =» } 1/ FullSimplify

Sin[x (z—¢y)]
True
Indeed by this sentence the theory of the gammattandhypergeometric functions turns out to be dusec

whole, belonging together. The customary doctrihthe gamma function and Euler's integrals ist anlffagment of
this more general theory, whose uniformity is tgtalfficient. The uniformity is caused by Cauchyptegral theory.
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In this present elaboration | prove my sentencetiermost important case == n only. As to the left cases |
must refer the reader to my elaboration in ActaliMabl. 25. The following proof, which is based tve theory of the
reciprocal functions, is totally different from tbee in Acta Math.

m 8 12. Integration of Hypergeometric Differential Equations in the
Remarkable Casen=n

If m==n for the differential equation (82) and,==b,==1, then it has got three sigular locations
X==0,X==-1, X == o0.

@ +boX) VIXI+ @ +bi )XY [XI+ A +X) X" y™[x]==0/.{x > # m-> 3} & J@ {-1, 0,00} //
MatrixForm

(a0 — bo) Y[-1] - (8 — by) Y[-1] ==
2 y[0]==0
(ag + 00 b) Y[oo] + o0 (8 + 00 by) y'[eo] + 00 YF[oo] == 0

Now in this case the integral

y==J[X, a] ==

f mG[z] Pzl x*dz (90)
a—i oo

2mi
converges within the wholeplane except for the negative half of the reakaxi
Becausé5[z] P[z] can be linearly presented hyexpressions of the form

Glz] Sinz(z-¢y)] - - - Sinfxr (z— Cy-1)], (91)

and the absolte value of this expression due tpe§jdation (25) can be brought to the farmi!tl f[s, t], thus equation
(90) converges equally due to § 8, sentence (thimveach area being defined by

1
—(r—e < Arg[X] < +(1 - €), e<|x‘ <(—), (92)
wheree stands for an arbitrary small positive number.
Due to § 10 integral (90) fulfills equation (82)),tiis possible to locate the integration pétht i o) in such a

way, that it does not pass any poleGifz] by the translatiorz » z+ 1. This always is possible, if the sizpsando
fulfill a certain condition. The poles @[z] are members within th&n arithmetical series

Pripy =1 py =K (93)
v=1,2,---n,
oy +1, 0,42, -, 0,+K, - (94)
namely the concerning pole jsfold, if p series contain it. Now, if all locatiops, p», - - -, p, are at the left hand side
and all locationgr; + 1,02+ 1, - - -, 0y + 1 are at the right hand side of the parallel stripe

Rep,] <a=Rdzl <a+1<Rfo, +1], v=12,---n, (95)
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then the integration patfa + i co) obviously has got the desired location. But ifsuzh stripe exists for the present,
then it is possible, as shown in my mentioned efaiiiam, always by simple operations, that the sizas finally fulfill
this condition.

Thus by this assumption (95) the integral (90)ilfalthe differential equation (82). Now the questis, whether
it also is able to present the general integraafation (82). We can show directly by our theagin developed in §
8, that this indeed is the case. SirBfz] P[z] can be considered to be a homogeneous functidm wvidefined
coefficients ofn expressions of the form (91y,is also such a function of particular integrals of equation (82). These
must build up a fundamental system, because otberthie undefined constants could be determineddin a way, that
y would disappear identically. But from this wouldléw further on, because of the last sentence & @at also the
corresponding reciprocal functi@{z] P[z] would disappear identically, i.e. that

C. +C,
Sinrz-cp] ~ Sinrz=-cn]

would be identical to zero, where not &lwould be equal to zero. Now this is impossible dughe assumption
concerningecy, - - -, Gy, thus our statement is proveahus the integral (90) gives the general solutidreguation (82)
under the above given assumption (95).

Since the convergence area of equation (90) coesltlte wholex-plane except for the negative half of the real
axis, equation (90) has got a valuable advantagethe series expansions being valid for the iatlegsf equation (82),
which converge only within a limited neighbourhoafdthe singular locations. We will just as well @llate, what use
derives from this.

If we compare the integrdl[x, a] to J[x, a— k] andJ[x, a+ k], which develop from the first one by shifting of
the integration path both into negative and intsiipee direction of the real axis, then accordiogtite sentence of
Cauchy is

JIx a] = ZRV+J[X, a—Kki,
Iix, al == (R), +J[x a+Kkl,

whereR, and(R'"), stand for the residua, that belong to the poleaden the corresponding integration paths. By the
sentence at the end of § 5 now easily follows

lim J[x a-k|=0 for ’x’ <1,

I(Ilm J[x,a+k]=0 for ’x’ >1.

Thus forJ[x, a] arise two series expansions, the one of which emes for| x| < 1, the other one fof x| > 1.
These series are without or with logarithms depagdin the poles oB[Zz] P[z] being simple or manifold locations of
infinity. In the following because of shortness went to deal with the first case only.

Until the end we assumtihat among the differences
Pu— P and o,-o0, (96)

for 4 # v there is no integer numbédfurther on we assume continuatlyat condition (95) is fulfilled.
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By assumption (96) we can identify the siz®s - - -, ¢, of P[Z] either to bep or o. By this and by
considerations being very similar to the ones &&§ises the following importaidentity:

n

. Sin[n(z- o] ) : A,
Pra=| | = [Zl Sirin (2- py)] ]

y=1
) (97)
B 1_[ Sinr(z-0,)] (< 7B,
B T i Sinlx (z—-0,)] |
v=1 V=
With z== p4, - - -, pn the A are expressed linearly by tl& with oppositez==0, - - -, oy the B are vice versa

expressed linearly by the.

We get for our fundamental function

n

Glz] = ]—[ Miz-p- |2+, -2 (98)
v=1

v=1

by use of equation (7) both of the expressions

n Ve n Ve
Glz] == G[Z [ﬂl m] =H|[Z] [H m]a (99)
where
617 == [k]_[1 ER— ) H(2) == [k]_[1 e ] (100)
617 ]_[ — == l_[ — |
L ] Sin[x (z—- p,)] L] Sin[x (z-0,)]
s [ - n Ilz-
{612 - l_l M, H[zZ] » ]_[ M} /. {T » Gamma, n - 1}
L] 1+ px-12 = I'[z- o]

% // FullSimplify

nCsdn(z- p1)] Gammgl — z+ o1 . Csdrn (z—- 01)] Gammégz — p4]
Gammal — z+ p] T Gamméz— o]

True

Because of relation (9%[z] behaves regularly within the half plaRe[z] < a+ 1; in the same wayH[z] behaves
within the half plandRe[z] > a.

Now because of the equations (97) and (99) weag&fiz] P[z] both of the identical expressions

n A _ . 7 B;
GlZ] Plz] = Glz] ; m = H(Z ; _SI_I’I[H—(ZT,)] (101)

and also fod[x, a] both of the corresponding presentations
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n
Ixa =S AT = ZB. 5 Ix (102
i=1
with
0) 1 a+1 0o bis
Ji[X] = - Z|X*dz, 103
=g ) iz z—pn] 917 (103)
(c0) 1 +i 00
Hx = 5= fa —  _H[Zxdz (104)
a_

2ri ico SIN[m(z—07y)]

Because of the mentioned properties@fand H within the above mentioned half planes one gety wimple

) (00)
expansions for thd;[x] in the neighbourhood of == 0 and for theJ; [x] in the neighbourhood of == co, namely

results
) =
I =x7 Y Glp-vI(=x"  for(Ix])<1,
v=0
() 1,7+ & 1\
J I (;) > Hioi+1+] (—;) for (|x|) > 1.
v=0
= Gammalz— pi] Gammall— (z— py)] // FullSimplify
Sin[x (z— pi)]
True

n ﬁ Gammal+ ool -17]

Pluse@e |Residug -~
[ (z— ppD)] L] Gamma[l + ppl - 7]

{ppl - p1, 00l - 01}

1+ —Z]
% == Xx"” Z Glpi=v1(=x)" /. g[ZJ ]_[ r[l+;-k Z]
K=

{I' > Gamma, n - 1, p; - p1} // Simplify

XPr Gammdl — p1 + 01] — X1 Gamméd2 — p1 + o] +

(105)

y=1,2,---n

(106)

X% {z, ppl-#] & /@ Rangd0, 4| /.

1 1
= x> Gammé3 - p1 + o] - 5 X2P1 Gammdéd — p1 + o1] + > X*P1 Gammd5 — p; + 01]

True
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) n Gamma[z - pp1]
Plusee |-Residud — | | X% {z, ool+1+#)] & /@ Rangd0, 4]| /.
Sin[x (z— o0)] = Gamma[z- ool]

{ppl > p1, o0l > 01}

o+l r
==3) ZW“”](-—) ZanpE=—l
Ok

{I' > Gamma,n - 1, o -» o1} // PowerExpand// Simplify

X171 Gammal — p1 + 1] - X 277t Gammé2 — p1 + o1] +

falvecs -4

1
71 Gamméd3 — p1 + 01] — 5% —5-

1
T Gamm@d — p1 +o1] + — X

71 Gammab —
>4 - p1+01]

True

The complete expressions of the coefficients asetdequations (100):

‘ (5 T+ 0w —pi +V]
Glpi - vl = [H EER— ] (107)

T+ 0 —pi + ] M1+ 0x—7]
| | == | |—— /2> pi =)
-, I+ px = pi +v] 1 1+ pc-2

True

_ __ N T+ 0i— px+ V]

Hioi+1+v]= [g Il+0 -0+l ] (108)
- (1 i = L I'lz-
l_[ [ T pk+V] ==[l_l—[z pk]]/.{Z—)O'i+1+V}
1+ o0i—ox+v] I'[z-oy]

k=1 k=1
True

Now if we ask for thetransforming substitutionsthat lead from the fundamental system (105) te th
fundamental system (106) and vice versa, then itheyit from identity (102). WithA, == 1 and all remainingA being
equal to zero, equation (102) gets the form

() N o )
Ix=> BJI k=1,2--n (109)
i=1

With By == 1 and all remainin@® being equal to zero, yields
Jix -—ZA.(")J X k=120 (110)

The constantﬁfk) result from identity (97) by setting== 01, - - -, on, While all A except forAx == 1 are set to zero;
and in corresponding manner tA&() are calculated. By this is found

B [ 1" sinx @ - o) = [ | Sintx 07 - 1, (111)
v=1

v=1
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i==1,2,---,n,
0 Tk
(O ) .
AR T ] sinx i —p)l=] | Sinx (o - o), (112)
v=1

v=1

where byk) and(i) is shown, that does not get the valleor i, respectively.

(1424 Sinlz (07 = p)D) 10 2 ke1 Sinlz (07 = p,)]

substitutionrule = {B;_j_:»

(1524 Sinlz (1 = 0D [Ty <ice2 Sinl (01 = )]
(T2, Sinl (o1 = po))) 15142 Sinlx (o1 = py)]
{Bi k= (Ht;% Sinx (i = p)D) [Ty-ks1 Sinlz (07 = py)] |
= (A Sinx (07— o)D) [T, Sinlx (07 - 0]
A o o IBISIT (P =)D [T Sinlr (o = )
T (LA SinT (o — p)D TT)_ipy Sinlz (o1 — py)]

. 7l'Ai H . JTBi
Z —— Z ——
6l ]Z:A Sin[x (z- pi)] [ ]Z Sin[z (z-07)] /

i=1

Ai_,k_ g

R e =l
k=1 k=1
{I' > Gamma,n = 2} /. {A; = 1, A, = 0, Bi_ = B 1} // ExpandAll
% /. substitutionrule /. {n - 2} // FullSimplify

nCsdnz—mpi] Gammdl — z+ o] Gamm@l — z+ 0]
Gammdl — z+ p1] Gammél — z+ p,] o
nCsdnz— o] Gammdz — p;] Gammaéz — p,] By 1
Gammaz — 1] Gamméaz — o] M
nCsdr z— mop] Gammdz — p;] Gammdz — p,] By 1
Gammaz — 1] Gammaz — o]

True

(M52, Sinfz (07 = 7)1 [< 44 Sinlz (@ = )]
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. T A " . 7 Bj
Z ——————— == Z Y
6l ]Z:A Sin[x (z— pi)] []Z Sin[z (z-07)] /

i=1
o= | g w0 | oy
k=1 k=1
{I' > Gamma,n - 2} /. {B, » 1,B; » 0, A__:» A} // ExpandAll
% /. substitutionrule /. {n - 2} // FullSimplify

7 Csdrnz—rmp1] Gammdl — z+ o] Gammal — z+ o2] A1 2
Gammdl — z+ p1] Gammdl — z+ p5] *
nCsdnz—mp2] Gammal — z+ o1] Gammadl — z+ 02] Az 2
Gammal — z+ p1] Gammgl — z+ p;] -
nCsdnz—noy] Gammgz — p1] Gammaz — p;]
Gammaz - o1] Gamméaz — o]

True

The treatise of other questions concerning thegrateon of hypergeometric differential equationssinbe
omitted at this occasion.

m 8 13. The Ordinary Hypergeometric Differential Equation

For the equation of second order

dy d?y
(a0+box)y+(a1+b1x)xw+(1+x)x2W:: , (113)

which by the assumptions

X=—t, a=0, ay=y bo=aB bi=a+p+1,

(114)
plzzo, p2::’y—1, 0'1::a—1, 0'2::[3—1
changes to the usual Gauss Kummer equation
(1—t)t@+( —(a+ﬁ+1)t)ﬂ—a,8y::0 (115)
ae dt ’

Solvdag—a;z+az(z+1) ==0/.{ag > 0,a; » y, a» » 1}, 7]
{z- 0}, {z—> -1+y}}
Solvdby— by (z+ D+ by (z+ D) (z+2)==0/.{bg»> a B, by > a+ B+1, b, > 1}, 7]

{z--1+a},{z>-1+p}}
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#
" & J@ (@ +boX) YIXI+ (@ + b1 X)X y'[XI+ 1+ x) x? y"'[x] == 0/.

{y = Function[{t}, y[-t]], x » —t, a0 > 0,8, » v, by = a B, by » a + B + 1} // Simplify
DSolvd(ag + bg X) Y[X] + (@1 + by X) X y'[X] + (1 + X) NG V' [IXI==0,yIx], X] /. {x—» —-t,a0 > 0,81 - vy,
bp > apB, by —»a+pB+1,C[1] » C[1] (-1 // Simplify // PowerExpand// ExpandAll

—a Byt +t(-td+a+ P+ Yl - (-1+D)t2y[t]==0

{{yl-t] - C[2] Hypergeometric2AB, a, y, t] + t¥™¥ C[1] Hypergeometric2H1 + 8-y, 1+ a -7y, 2— 7, t]}}

the formulae (105) and (106) get the following #ap

(e

© ZF[1+0'1—pi+v]F[1+0'2—pi+v](

Ji[x] =x7*
= T+ p1—pi +VIT[1+ p2 = pi +V]

)", (116)

Table]

oo

L Z Gamma[l + o1 — p; + v] Gamma[l + o — p; + V]
X 1

=X/ {p1=0,po=y-1l 01> a-1,
Gamma[l + p; — p;i + v] Gamma[l + p, — pi + V] P pz !

v=0

o, = B -1} // FullSimplify // FunctionExpand, {i, 2}] // MatrixForm

Gamméa] Gammag] Hypergeometric2Ra,8,y,—X]
Gamméy]
XY Gammal+a—y] Gammél+pS—y] Hypergeometric2f1+a—y,1+—y,2—y,~X]
Gamm§2—y]
i==1,2
<30>[X] _ ( 1 )wl S IMl+0i—pr+VIT[L+ 05— pa+ V] ( 1 ) 117
! —x = IMNi+oj—o1+vlI'l+oj—02+ V] X ( )

1\ Gamma[l+ o — p1+v]Gamma[l+ o — pr +v] 1y
Table|| — ——| /. 4p1>0,p2 >y -1,
X Gammal+ o — o1 + v]Gammal + o — 05 + v] X

v=0
o> a-1, 0, > B-1}//FullSimplify // FunctionExpand, {i, 2}] // MatrixForm

()" Gamméa] Gamméal+a—y] Hypergeometric2fir, 1+a—y, 1+a—fB,— x|

Gammal+a—pf]

(é)ﬂ Gammé4p] Gammal+p—y] Hypergeometric2H8,1+ 8-y, 1—a+ﬁ,—é]
Gammgl-a+p]

while the transforming substitutions (109) and (1€ the form:

O ; (00) ; (c0)
__ Sinx(o1-p2)] Sin[z (62—-p2)]
IlX = S S X+ Sireeyr 21X (118)
O ; (00) ; (c0)
__ Sinx(o1-p1)] Sin[z (62—-p2)]
20X = Sz S X+ Sireoyr 21X

Correction of printing mistake:

o Sinlr (7= 5 Sinlr (o2=p2)1 5
NN = S 11X S ooy J21X):

O Sinir (g1 -p0] &) Sinlz (7=pv1 5
JolXl = S 11X * Sironr J2 X1
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) 1 (c0) o 1
IX] == Z Bix Ji [X] /. substitutionrule /. {n » 2, k » #} & /@ Range[Z]] /.{Csdz_] =» S'_[T} //
. S 12
i=1
MatrixForm
0 - ® . *
__ Sin[x (=p2+01)] h[X] Sin[z (=p2+02)] J2[X]
‘Jl[x] - Sin[n (o1-07>)] Sin[r (—o1+03)]
Jo[x] == SMrCprranlild | Sir(prrol i
2 - Sin[n (o1—07>)] Sin[n (-o1+03)]
(o) siniz (p1=o2)] ¥ Siniz (po—02)] ¥
I X1 = Sripepar X+ Siro, 0y 21X (119)
(o) siniz (p1=orp)] ¥ siniz (po—orp)] ¥
DX = S por X+ S, J2lX-
Correction of misprint:
() Sinir (pr-o)1 O sinir (p2=o)] O
Jl [X] - Sinlz (o1 —p2)] J]_[X] + Sin[z (L2 —p1)] JZ[X]’
(e0) sinir (p-o] O Sinir (-on] ©
Do IXl = s —r WX+ sy J21X)-
n
(c0) © o
J[X] == Z Aix Ji[x1 /. substitutionrule /. {n - 2, k » #} & /@ Rangd2] | /. {Csdz_] =» S'_[T} //
. S (2
i=1
MatrixForm
© Sinlx (ol Xl Sinix (op-02)] BI
__ 2INr(p1—03)] hiX N (p2—02)] J2|X
Ju[X] == Sinz (p1-p2)] Siniw (—p1+p2)]
0 0
Tyl —_ Sinx(pi—o)] KXl | Sinlx (pp—0)] B[x]
Jo[X] == Sinz (p1-p2)] Sinz (—p1+p2)]

The assumptions (114) yield the usual formulae,ev@vthe symmetry won above is rather lost by this.

m 8§ 14. Final Remarks

Stirling's formula always has been important conicey the theory of the gamma functions. In a former
elaboration*) | have given a derivation of the samwich totally differs from the usual derivatioasd the one of
Stieltjes**), and which is also uniformly connected to thedry of the reciprocal functions being developedi8.
That formula indeed is contained within the formula

Log[T'[x+ 1]] == -C x 1 e z X dz (120)
ogIT[x + 1]] == ~C x— Zm.ﬁ_m S A 5 4z

gammalogserieEl] = SeriegLog[Gamma[x + 1]], {X, 0, 5] // Simplify

X + 1 PolyGammég2, 1] x° + X + L PolyGammgd, 1] X° + O[x]°
6 oY ! 360 120 Y !

TT
—EulerGamma +

gammalogserieR?] =
z

, Zeta[Z] f—, {z, 2+ #)]| & /@ Rangd0, 3])
Sin[r Z] z

—EulerGammax — Plus @@ (—Residue{

m2xe gt 1
+

—EulerG -=
ulerGamma + 12 360 _ 3

X2 Zetd 3] — % x> Zetd5]
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gammalogserieEl] == gammalogserieR?] // Normal // FullSimplify

True

PolyGammd#, 1] + Gamma[# + 1] Zeta[# + 1] & /@ Rangq7] // FullSimplify

{ 72 0 274 1675 1678 }
3" 157 63 "7 15
?Zeta

Zetds] gives the Riemann zeta function. Zgstagd gives the generalized Riemann zeta function.

? PolyGamma

PolyGammégz] gives the digamma function §si
z). PolyGammfn, Z] gives the nth derivative of the digamma function.

Gamma'[z]
Gamma|[z]
PolyGammg0, z]
which | present here without proof. From this fotajuvhich expresses a remarkable connection bettheegamma
and Riemann's zeta function, arises Stirling's tdany shifting of the integration path into negatdirection.

4

Zeta[Z] il . {z. 1-#] & /@ Rangd0, a)
z

—EulerGammax — Plus@@ (Residue{ .
Sin[r Z]

e” // Simplify // ExpandAll

1

_t 1 1
~ 360, + 2% EulerGamma + x (-1 + EulerGamma- Log[x]) + > (Log[2 7] + Log[x])

1 1 1
E-woe 28 X 4/2 1 x2*X

1
Series{Log[Gamma[; +1]], {x, 0, 4]

1
Series::esss Essential singularity encountered in Ganﬁn;(}a+ 1+ O[x]5].

Log[Gammé% +1+OXP]]

From the position of our uniform theory of the gamand the hypergeometric functions the integrahtdae
within the conventional theory of the gamma functgive a very small part of the relations, that bendeveloped on
the whole. We must dispense with a more detailedgntation of this topic on this occasion. Whatresting relations
hereby can be found, this shows an elaborationWroi/oronoi, who did his work without knowledge of my theorfy o
the reciprocal functions, which is ten years olddowever one conclusion of the reciprocity law (B shall be
emphasized here and elucidated at an example.

@[x] be a function of the clag®) due to § 8. Them can be presented in manyfold manners as a definite
integral on the following type:
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© dt
(I)[X] ::f (I)l[%] (I)z[t] T, (121
0

with @, and @, also standing for certain functions of the clé€s.

This is proved in the following way. F[Zz] stands for the reciprocal function correspondiogthe function®,
thenF [Z] within the formula

a+i co
D[X] == - f Flzl x%dz (122)
a—i oo

can be presented in manyfold manners as a produabcunctionsF; andF, of the clasgF). | presuppose, that;
andF, as well ad behave regularly in the neighbourhood of eachefitication within and at the border of the stripe
a < Re[z] < B and there are characterized with increadin§) ==| s+ i t | by the formulae

|(Falz) | =™ fafs t],  [(Fal2)| =e " fa[s t],
|F[2]| =1 f[s 1], &1 + 00 == 0,

where thed and thef have got the meanings given in § 8. Nowbif and ®, respectively stand for the reciprocal
functions of the functions; andF,, then results

1 a+i co 00
Oy = f Fidx?dz  Falz = f Bolt] L dt,
2nmi a—ioo 0

—0d1 < Arg[X] < +¢4, a<a<p, a<Rdz] < B.

If F[Z] == F1[Z] F»[Z] is replaced in equation (122) and fes the last expression, then follows equation (121) b
inversion of the integration order.

1 00 a+i oo dt
f (f F1il[z] ®,[t] t* x‘zclz] _—
2ni Jo a—ico t

a+i oo X
% /. {f Fi[Z] ®2[t] 2 x 2 dz > <1>1[T] ®,[t]}
a

—i 0o

| f ([ X2 Filzl d2) @alt] Jt
0

t

2n

00 Py ] Pt]
It

2n

A simple example for this yields the formula befagnd by use of equation (40)

1 +i co o dt
- f I?[Z] x‘zdz::f et et —, a> 0.
2ri a—i oo 0 t
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fo Tt ot # /- {If[a_, b_, _1 (Print[al; b)}
fm% x*tdx /. {If[a_, b_, _]: (Print[a]; b)}
%0 == Gamma[z]?

Rdx] > 0

2 BesselK0, 2vx|

Gamméz)?

True

In an analogous way results, that also each fumafdhe clasgF) in manyfold manners can be presented as a
definite integral of the following type:

1 a+i co
F[s] == sz Fi[s— 7] F>[z] dz (123)
a

—i 0o

with F1 andF, also being functions of the clags).

1 a+i co 00
f (f X2 &[] F[Z] xs‘ldx)dz
2ni Ja 0

—i 0o

% /. {foox‘l"S'Z(I)l[x] Falzldx - Fi[s—Z] F,[z]}
0

| L2 x b2 00X dx) Faol2l d 2
2n

I f_IIO:OFl[s— Z1Fy[zldz
- 2n

For gamma and hypergeometric functions of seveealables a theory can be developed, that is totally
analogeous to the one dealed with in this elabmmatit)

Helsingfors, June 1909.

*) Eine Formel fur den Logarithmus transzendentemk&ionen von endlichem Geschlecht. (A formulahef t
logarithm of transcendental functions of finitesd#ication order) Acta Math. vol. 25.

**) Sur le développement de |dga). Journal de Math. (4) vol. 5

1) Sur une fonction transcendante et ses applitatiola sommation de quelques séries. Annales€deld
Norm., 3. Série, T. 21. 1904.

T1) Look at: Zur Theorie zweier allgemeiner Klasbestimmter Integrale. (On the theory of two gehelasses
of definite integrals), Acta Soc. Sc. Fennicae2d..1896.
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