Summary

m 1. TheVariance Theorem

Partial linear differential equations that leadat&ourier convolution of an initial value distribant with a so-
called propagator can easily be compared with nmedsdata— for example for the temporal resolution of a
density distribution;— in an analysis of variance.

The variance is calculated from the first three raota of the ordem € {0, 1, 2} of a distribution function.
The calculation of momenta using the Laplace oriéotransform of a distribution function is podsileven if
the solution function itself is not known. This pedlure simplifies the analytic discussion signifity

because the variance of a solution propagator fuedtally belongs to a simpler class of functiorentithe
solution propagator itself or even its Fourier calntion with the initial value distribution.

Basic to this procedure is the functional equatibwariance (1.14):
o?If «gl = o?[f]+0?(g],

which enables an adjusted variamcgt] — o°[to] of the measured data in comparison with the tiifferénce
t —to. The result is to be compared with the variancéhefpropagator of the solution. The propagatathef
solution starts at time= 0 as a Dirac delta distribution with zero variance.

In view of other comparisons between theory andsoesl data the analysis of variance has the adyatitat
a clear check of consistency is possible for atialrvalue distribution without making the mathetinal effort
too big.
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m 2. Delta Function

The Mellin transform opens the possibility for asdefamiliar approach to the delta distribution thet
consistent with the theory of functions. In thiswthe delta distribution can again be called aadtlhction in

the sense of the integral formula of Cauchy. ThdliM&ansform turns out to be a mighty general keyhe
field of function theory. Already in 191Blellin's theoremMellin [Mel1910], 88, p. 323) proved the existence
of the Dirac delta function (Dirac [Dir1927]) foomplex arguments. Representing the Dirac deltatifmas

a Fox H-function (Fox [Fox1961], Mathai and Sax§M&1978]) does not pose grave problems according to
Dixon and Ferrar [DF1936].

Since the work of Mellin [Mel1910] was published @erman, neither the French distribution theory of
Schwartz (see cite in [Falk1966], appendix 1V, 8) for the Indians (see [MS1978], bibliographylp7: the
German text is presented wrongly; the article qiidte Mellin [[Mel1910], end of 81, p. 307] is nasted in
their bibliography on p. 177) nor the Americans énaufficiently internalized it. Even in Germany Nitebs
work has receded into the background.

The delta function plays an important role in applyLaplace and Fourier transforms to fractionak#r
equations. This results in optimized fundamentatesys of propagators that may eventually even ootte
Green function of inhomogeneity.

The direct Mellin transform of a linear differerdteguation often results in a difference equatibe, solution
manifold of which can lead far beyond the Melliartsform of Fox H-functions.

m 3. Anomalous Diffusion

With this preparatory work the classification offdsive processes is fairly easy. Diffusive proesshave a
variance which increases in a strictly monotonoay with timet. The variance of the diffusion propagator
follows a power law in timer?~A t#, where normal diffusion, according to the Einstestation, is given by
the powerg = 1. In the case of anomalous diffusion, subdiffusifrc B8 < 1) or superdiffusion{ < B < 2)
are characterized. The cg8e= 2 results in the variance of a wave equation.

Independently of whether a non-fractional diffusiguation is parabolic, elliptic or discrete, itpigssible to
postulate for the variance of the propagator attléee hypothesis of its proportionality with tinwehich means
normal diffusion in the sense of the Einstein ietat The hyperbolic Cattaneo diffusion equationidgethe
variance of normal diffusion only asymptoticallgy farge times.
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To model anomalous diffusion, the easiest solui®mo utilize fractionalized Fick diffusion equati& In
doing this, the combination of the time-fractioeguation of Schneider and Wyss [SWy1989] with thecs-
fractional equation of Seshadri and West [SWel38®jws the advantage of the solution of Schneiddr an
Wyss with its well-defined variance. A well-definedriance can also be calculated for the time- spate-
fractional solutions by introducing finite limit§ smtegration— however, the result is much more complicated
than with Schneider and Wyss.

In order to describe radially symmetric systemshauit the appearance of negative densities for the
propagator, the radially symmetric versions of Foeirier transform, of the Laplace operators anthefdelta
function should be adjusted to each other in sualayathat an analytic reduction of the dynamicalapn to

just one dimension can be achieved with the helfh@fadially symmetric Fourier transform. Evenudb the
functions that contain negative densities matheralyi solve the respective equation, they nevesteel
contradict the actual physics behind them in thessehat inconsistencies have been proven to iexésitting

up the equation or in solving it.

m 4. Nuclear Magnetic Relaxation

An application of the fractional diffusion equatiaf Schneider und Wyss has beed addressed foratever
dimensions of space. When calculating the cormiafiinctionG[t], huge mathematical absurdities occur for
the corresponding Fourier convolution in severatetisions. These, however, were consistently arghetly
avoided by Zavada and Kimmich [ZK1998] in theiralission of the convolution integrals at the origirthe
coodinate system= 0.

The special setting= 0 for the Fourier convolution can be interpretedtaseffect of the distribution for its
expectation value. By this the resulting integiEishe correlation functio[t] are constructed in such a way
that the power law of a fractal structugfr]~rH-1 with the help of the similarity variable of thespective
dynamical propagator can be transformed into a pdawe in time— and this with no dependance on the
concrete shape of the propagator.

Comparing the theoretical formula with the powevddor a given frequency of NMR-spin-lattice relaxation
timesT,; measured over several orders of magnitude, ods fimat the actual physical transport processes can
be classified as superdiffusive (i.e. abnormalst)fa

Here also the classification of diffusive theorigdased on the variance theorem, leading to tloeirostance
that the propagator of the diffusive theory musgtidia variance that has a power law in time. Thiteigion
theory of Schneider and Wyss has this property.
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m 5. Measuring Diffusion

With the appropriate analytical and numeric effbr$ possible to describe the Fourier convolutdriwo Fox
H-functions. The Fourier convolution of the Gausadtion and the Schneider/Wyss propagator yields an
alternative to the Voigt profiles that is charaited by the fact that it has a well-defined var&anc

The variance of a Fourier convolution of the Gafusetion and the Schneider/Wyss propagator yiells a
important result, namely the additive behaviouthef variances of the convolution components. Téssilt, of
course, is in line with the variance theorem.

The adjustment of variances makes it possible ¢cipely assess diffusive data. In doing this the televant
parameters in anomalous diffusigh,(time exponent) and (generalized diffusion constant), can be deduced
from a linear fit in a doubly logarithmic plot ohe variance adjustment. This procedure of evalnatio
facilitates the work of the experimentator, espcidhe or she does not know the mathematicakgemund

of the Fox H-function and its Fourier convolutions.

The measured data of Wei et al. [WBL2000]Single File Diffusioncorrespond well with the characteristics
of subdiffusion (i.e. abnormally slow diffusion).

With the calculation methods shown here, it ispiiimciple, possible to distinguish between two tieDwith
identical properties of the variance of the propagabut for the concrete case demonstrated hegelagk
further and more accurate (driftless) experimetidah.

m 6. Computer Algebra

It was possible to execute the calculations adddedgere within a reasonable lapse of time due ¢o th
consistent use of computer algebra. As a "by-prtidtise FractionalCalculus software package for
Mathematica was developed. This enabled us not only to plotFok H-functions and their Fourier
convolutions together with other functions, butoais write out all analytic calculations even ire thields of
fractional differentiation of complex-valued order of the frequently questioned delta function. ébgr the
possibilities offered by the Mellin transform faolging dynamical equations or for consistently egilag the
theory of functions have not yet been exhausted.
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m 7. Outlook

First steps towards a description of diffusive eyt have been successfully taken, also for the ohse
anomalous diffusion. A whole series of additiortatges can follow:

e The discussion of diffusive automatic control systeeven if it is only a thermostat, has not yetrbeorked
on.

e There is a lack of additional and more accuratitigss) data on anomalous diffusion.
e TheFractionalCalculussoftware package fdviathematicacan still be improved.

e The radially symmetric variants of Fourier transgfigr delta functions and Laplace operators must be
mutually adjusted fod > 1 dimensions in such a way that they all fit togethell.

e The applicability of the variance theorem to aiklar differential equations of physics and engingeorings
with it simplifying consequences which cannot yetfathomed.
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