
Summary

‡ 1. The Variance Theorem

Partial linear differential equations that lead to a Fourier convolution of an initial value distribution with a so-

called propagator can easily be compared with measured data ~ for example for the temporal resolution of a

density distribution, ~ in an analysis of variance.

The variance is  calculated from the first  three momenta of  the order m Œ 80, 1, 2<  of  a  distribution function.

The calculation of momenta using the Laplace or Fourier transform of a distribution function is possible even if

the  solution  function  itself  is  not  known.  This  procedure  simplifies  the  analytic  discussion  significantly,

because the variance of  a  solution propagator  fundamentally belongs to  a simpler  class  of  functions than the

solution propagator itself or even its Fourier convolution with the initial value distribution.

Basic to this procedure is the functional equation of variance (1.14):
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which enables an adjusted variance s2@tD -s2@t0D of the measured data in comparison with the time difference

t - t0. The result is to be compared with the variance of the propagator of the solution. The propagator of the

solution starts at time t = 0 as a Dirac delta distribution with zero variance.

In view of other comparisons between theory and measured data the analysis of variance has the advantage that

a clear check of consistency is possible for any initial value distribution without making the mathematical effort

too big.



‡ 2. Delta Function

The  Mellin  transform  opens  the  possibility  for  a  less  familiar  approach  to  the  delta  distribution  that is

consistent with the theory of functions. In this way the delta distribution can again be called a delta function in

the sense of the integral formula of Cauchy. The Mellin transform turns out to be a mighty general key in the

field of function theory. Already in 1910 Mellin's theorem (Mellin [Mel1910], §8, p. 323) proved the existence

of the Dirac delta function (Dirac [Dir1927]) for complex arguments. Representing the Dirac delta function as

a Fox H-function (Fox [Fox1961], Mathai and Saxena [MS1978]) does not pose grave problems according to

Dixon and Ferrar [DF1936].

Since  the  work  of  Mellin  [Mel1910]  was  published  in German,  neither  the  French  distribution  theory  of

Schwartz (see cite in [Falk1966], appendix IV, p. 98) nor the Indians (see [MS1978], bibliography, p. 177: the

German text is presented wrongly; the article quoted by Mellin [[Mel1910], end of §1, p. 307] is not listed in

their  bibliography on  p.  177)  nor  the  Americans  have  sufficiently  internalized  it.  Even  in  Germany Mellin's

work has receded into the background.

The  delta  function  plays  an  important  role  in  applying  Laplace  and  Fourier  transforms  to  fractional  linear

equations. This results in optimized fundamental systems of propagators that may eventually even contain the

Green function of inhomogeneity.

The direct Mellin transform of a linear differential equation often results in a difference equation, the solution

manifold of which can lead far beyond the Mellin transform of Fox H-functions.

‡ 3. Anomalous Diffusion

With this preparatory work the classification of  diffusive processes is  fairly easy.  Diffusive processes have a

variance which increases in a  strictly monotonous way with time t.  The variance  of  the diffusion propagator

follows a power law in time s2~l tb,  where normal diffusion, according to the Einstein relation, is given by

the power b = 1.  In the case of  anomalous diffusion, subdiffusion (0 < b < 1)  or  superdiffusion (1 < b < 2)

are characterized. The case b = 2 results in the variance of a wave equation.

Independently of whether a non-fractional diffusion equation is parabolic, elliptic or discrete, it is possible to

postulate for the variance of the propagator at least the hypothesis of its proportionality with time, which means

normal  diffusion  in  the  sense of  the  Einstein  relation.  The hyperbolic  Cattaneo  diffusion equation yields  the

variance of normal diffusion only asymptotically, for large times.
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To  model  anomalous  diffusion,  the  easiest  solution  is  to  utilize  fractionalized  Fick  diffusion  equations.  In

doing this, the combination of the time-fractional equation of Schneider and Wyss [SWy1989] with the space-

fractional  equation  of  Seshadri  and  West  [SWe1982]  shows  the  advantage  of  the  solution  of  Schneider  and

Wyss with its  well-defined variance. A well-defined variance can also be calculated for  the time- and space-

fractional solutions by introducing finite limits of integration ~ however, the result is much more complicated

than with Schneider and Wyss.

In  order  to  describe  radially  symmetric  systems  without  the  appearance  of  negative  densities  for  the

propagator, the radially symmetric versions of the Fourier transform, of the Laplace operators and of the delta

function should be adjusted to each other in such a way that an analytic reduction of the dynamical equation to

just one dimension can be achieved with the help of the radially symmetric Fourier transform. Even though the

functions  that  contain  negative  densities  mathematically  solve  the  respective  equation,  they  nevertheless

contradict the actual physics behind them in the sense that inconsistencies  have been proven to exist in setting

up the equation or in solving it.

‡ 4. Nuclear Magnetic Relaxation

An  application  of  the  fractional  diffusion  equation of  Schneider  und  Wyss  has  beed  addressed  for  several

dimensions of space. When calculating the correlation function G@tD,  huge mathematical  absurdities occur for

the corresponding Fourier convolution in several dimensions. These, however, were consistently and elegantly

avoided by Zavada and Kimmich [ZK1998] in their discussion of the convolution integrals at the origin of the

coodinate system r = 0.

The special setting r = 0  for the Fourier convolution can be interpreted as the effect of the distribution for its

expectation value. By this the resulting integrals of the correlation function G@tD are constructed in such a way

that  the  power  law of  a  fractal  structure g@rD~rH-1  with the  help  of  the  similarity variable  of  the respective

dynamical  propagator  can  be  transformed  into  a  power  law  in  time  ~  and  this  with  no  dependance  on  the

concrete shape of the propagator.

Comparing the theoretical formula with the power laws for a given frequency n of NMR-spin-lattice relaxation

times T1  measured over several orders of magnitude, one finds that the actual physical transport processes can

be classified as superdiffusive (i.e. abnormally fast).

Here also the classification of diffusive theories is based on the variance theorem, leading to the circumstance

that  the propagator  of  the diffusive theory must  yield  a variance that  has a power law in time. The diffusion

theory of Schneider and Wyss has this property.
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‡ 5. Measuring Diffusion

With the appropriate analytical and numeric effort it is possible to describe the Fourier convolution of two Fox

H-functions.  The  Fourier  convolution  of  the  Gauss  function  and  the  Schneider/Wyss  propagator  yields  an

alternative to the Voigt profiles that is characterized by the fact that it has a well-defined variance.

The  variance  of  a  Fourier  convolution  of  the  Gauss  function  and  the  Schneider/Wyss  propagator  yields  an

important result, namely the additive behaviour of the variances of the convolution components. This result, of

course, is in line with the variance theorem.

The adjustment of variances makes it possible to precisely assess diffusive data. In doing this the two relevant

parameters in anomalous diffusion, b  (time exponent) and l (generalized diffusion constant), can be deduced

from  a  linear  fit  in  a  doubly  logarithmic  plot  of  the  variance  adjustment.  This  procedure  of  evaluation

facilitates the work of the experimentator, especially if he or she does not know the mathematical background

of the Fox H-function and its Fourier convolutions.

The measured data of Wei et al. [WBL2000] on Single File Diffusion correspond well with the characteristics

of subdiffusion (i.e. abnormally slow diffusion).

With the calculation methods shown here, it is, in principle, possible to distinguish between two theories with

identical  properties  of  the  variance  of  the  propagator,  but  for  the  concrete  case  demonstrated  here,  we  lack

further and more accurate (driftless) experimental data.

‡ 6. Computer Algebra

It  was  possible  to  execute  the  calculations  addressed  here  within  a  reasonable  lapse  of  time  due  to  the

consistent  use  of  computer  algebra.  As  a  "by-product"  the  FractionalCalculus  software  package  for

Mathematica was  developed.  This  enabled  us  not  only  to  plot  of Fox  H-functions  and  their  Fourier

convolutions together with other functions, but also to write out all analytic calculations even in the fields of

fractional  differentiation of  complex-valued  order  or  of  the  frequently questioned  delta  function.  Hereby the

possibilities offered by the Mellin transform for solving dynamical equations or for consistently enlarging the

theory of functions have not yet been exhausted.
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‡ 7. Outlook

First  steps  towards  a  description  of  diffusive  systems  have  been  successfully  taken,  also  for  the  case of

anomalous diffusion. A whole series of additional studies can follow:

Ë The discussion of diffusive automatic control systems, even if it is only a thermostat, has not yet been worked

on.

Ë There is a lack of additional and more accurate (driftless) data on anomalous diffusion.

Ë The FractionalCalculus software package for Mathematica can still be improved.

Ë The  radially  symmetric  variants  of  Fourier  transforms,  delta  functions  and  Laplace  operators  must  be

mutually adjusted for d > 1 dimensions in such a way that they all fit together well.

Ë The applicability of the variance theorem to all linear differential equations of physics and engineering brings

with it simplifying consequences which cannot yet be fathomed.
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